留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电纺高导热GO/PEO纤维的制备及性能

冷向星 郑心纬 杜鸿达 康飞宇

冷向星, 郑心纬, 杜鸿达, 康飞宇. 电纺高导热GO/PEO纤维的制备及性能. 新型炭材料, 2018, 33(2): 125-130.
引用本文: 冷向星, 郑心纬, 杜鸿达, 康飞宇. 电纺高导热GO/PEO纤维的制备及性能. 新型炭材料, 2018, 33(2): 125-130.
LENG Xiang-xing, CHIANG Sum-wai, DU Hong-da, KANG Fei-yu. Preparation and properties of electrospun GO/PEO nanofibers. New Carbon Mater., 2018, 33(2): 125-130.
Citation: LENG Xiang-xing, CHIANG Sum-wai, DU Hong-da, KANG Fei-yu. Preparation and properties of electrospun GO/PEO nanofibers. New Carbon Mater., 2018, 33(2): 125-130.

电纺高导热GO/PEO纤维的制备及性能

基金项目: 973项目(2014CB932400);国家自然科学基金(51232005);深圳市科技创新委员会(KQCX20140521161756227,JCYJ20150331151358133).
详细信息
    作者简介:

    冷向星,硕士研究生.E-mail:leng19920531@163.com

    通讯作者:

    杜鸿达,副研究员.E-mail:duhd@sz.tsinghua.edu.cn

  • 中图分类号: TB332

Preparation and properties of electrospun GO/PEO nanofibers

Funds: National Key Basic Research Program of China (2014CB932400); National Natural Science Foundation of China (51232005); Shenzhen City Technology Innovation Committee (KQCX20140521161756227, JCYJ20150331151358133).
  • 摘要: 在聚氧化乙烯(PEO)电纺纤维中添加氧化石墨烯(GO),提高电纺PEO纤维的分子链取向度,从而增加纤维的热导率。讨论了氧化石墨烯的引入影响PEO分子链取向度的机理。通过偏振红外光谱和T型法测纤维热导率,验证了当分子链取向度最高时,PEO电纺纤维的热导率最高,达到22.9 W/m·K,与块体高分子相比,热导率提升了两个数量级。
  • Chung D D L. Materials for thermal condution[J]. Applied Thermal Engineering, 2001, 21:1593-1605.
    Kim K, Kim M, Hwang Y, et al. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity[J]. Ceramics International, 2014, 40(1):2047-2056.
    Gojny F H, Wichmann M H G, Fiedler B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites[J]. Polymer, 2006, 47(6):2036-2045.
    Sanada K, Tada Y, Shindo Y. Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(6-7):724-730.
    Wang F, Zeng X, Yao Y, et al. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity[J]. Scientific Reports, 2016, 6:19394.
    Zhou W, Qi S, An Q, et al. Thermal conductivity of boron nitride reinforced polyethylene composites[J]. Materials Research Bulletin, 2007, 42(10):1863-1873.
    Cao B Y, Li Y W, Kong J, et al. High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique[J]. Polymer, 2011, 52(8):1711-5171.
    Shen S, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature nanotechnology, 2010, 5(4):251-255.
    Yu J, Sundqvist B, Tonpheng B, et al. Thermal conductivity of highly crystallized polyethylene[J]. Polymer, 2014, 55(1):195-200.
    Lu C, Chiang S W, Du H, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO)[J]. Polymer, 2017, 115:52-59.
    Chen D, Liu T, Zhou X, et al. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes[J]. J Phys Chem B, 2009, 113:9741-9748.
    Ge J J, Hou H, Li Q, et al. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments:Electrospun composite nanofiber sheets[J]. J Am Chem Soc, 2004, 126:15754-15761.
    Tao D, Higaki Y, Ma W, et al. Chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers[J]. Polymer, 2015, 60:284-291.
    Wang J L, Gu M, Zhang X, et al. Thermal conductivity measurement of an individual fibre using a T type probe method[J]. Journal of Physics D:Applied Physics, 2009, 42(10):105502.
    Zhang X, Fujiwara S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics, 2000, 21(4):965-980.
    Kakade M V. Givens S, Gardner K, et al. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers[J]. J Am Chem Soc, 2007, 129:2777-2782.
    Wang Y, Li M, Rong J, et al. Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers[J]. Colloid and Polymer Science, 2013, 291(6):1541-1546.
    Fennessey S F, Farris R J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns[J]. Polymer, 2004, 45(12):4217-4225.
    Kongkhlang T, Tashiro K, Kotaki M, et al. Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers[J]. J Am Chem Soc, 2008, 130:15460-15466.
    Yano T, Higaki Y, Tao D, et al. Orientation of poly(vinyl alcohol) nanofiber and crystallites in non-woven electrospun nanofiber mats under uniaxial stretching[J]. Polymer, 2012, 53(21):4702-4708.
    Ramesha G K, Kumara A V, Muralidhara H B, et al. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes[J]. Journal of colloid and interface science, 2011, 361(1):270-277.
  • 加载中
图(1)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  176
  • PDF下载量:  575
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-01
  • 录用日期:  2018-04-28
  • 修回日期:  2018-04-10
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回