留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中间相沥青表征研究进展

段春婷 郑冬芳 刘均庆 王秋实 梁朋 宫晓颐 宋怀河

段春婷, 郑冬芳, 刘均庆, 王秋实, 梁朋, 宫晓颐, 宋怀河. 中间相沥青表征研究进展. 新型炭材料, 2018, 33(3): 193-202.
引用本文: 段春婷, 郑冬芳, 刘均庆, 王秋实, 梁朋, 宫晓颐, 宋怀河. 中间相沥青表征研究进展. 新型炭材料, 2018, 33(3): 193-202.
DUAN Chun-ting, ZHENG Dong-fang, LIU Jun-qing, WANG Qiu-shi, LIANG Peng, GONG Xiao-yi, SONG Huai-he. Research progress on the characterization of mesophase pitch. New Carbon Mater., 2018, 33(3): 193-202.
Citation: DUAN Chun-ting, ZHENG Dong-fang, LIU Jun-qing, WANG Qiu-shi, LIANG Peng, GONG Xiao-yi, SONG Huai-he. Research progress on the characterization of mesophase pitch. New Carbon Mater., 2018, 33(3): 193-202.

中间相沥青表征研究进展

基金项目: 神华集团公司科技创新项目(SHJT-15-30).
详细信息
    作者简介:

    段春婷,博士.E-mail:duanchunting@nicenergy.com

    通讯作者:

    宫晓颐,博士,主任工程师,国家"千人计划"特聘专家.E-mail:gongxiaoyi@nicenergy.com;宋怀河,博士,教授.E-mail:songhh@mail.buct.edu.cn

  • 中图分类号: TQ127.1+1

Research progress on the characterization of mesophase pitch

Funds: Shenhua Group Science and Technology Innovation Project (SHJT-15-30).
  • 摘要: 中间相沥青是光学各向异性的芳香类碳氢化合物的聚集体,是一种重要的炭材料前驱体。中间相沥青的性质表征及分析对中间相沥青及其衍生产品的制备、质量调控及应用具有重要意义。中间相沥青的分子结构、分子量及分布的有效测定有助于掌握反应机理和控制产品质量,聚集态结构直接决定着炭纤维和其它衍生炭材料的性能,中间相沥青的流变性是炭纤维研制和生产过程中最重要的参数。本文综述了中间相沥青性质表征方面的研究进展,重点介绍了中间相沥青分子量、聚集态结构、流变性方面的表征方法及结果,最后展望了中间相沥青表征的研发前景。
  • Brooks J, Taylor G. The formation of graphitizing carbons from the liquid phase[J]. Carbon, 1965, 3(2):185-193.
    Patrick J, Reynolds M, Shaw F. Influence of carbonization conditions on the development of different types of optical anisotropy in cokes[J]. Carbon, 1975, 13(6):509-514.
    Wang L, Liu Z, Guo Q, et al. Structure of silicon-modified mesophase pitch-based graphite fibers[J]. Carbon, 2015, 94(1):335-341.
    Yao Y, Chen J, Liu L, et al. Mesophase pitch-based carbon fiber spinning through a filter assembly and the microstructure evolution mechanism[J]. Journal of Materials Science, 2014, 49(1):191-198.
    Shen K, Huang Z, Shen W, et al. Homogenous and highly isotropic graphite produced from mesocarbon microbeads[J]. Carbon, 2015, 94(1):18-26.
    Inagaki M, Qiu J, Guo Q. Carbon foam:Preparation and application[J]. Carbon, 2015, 87(1):128-152.
    Xie R, Zong Z, Liu F, et al. Nitrogen-doped porous carbon foams prepared from mesophase pitch through graphitic carbon nitride nanosheet templates[J]. RSC Advances, 2015, 5(57):45718-45724.
    Elizabeth Casco M, Martinez-Escandell M, Kaneko K, et al. Very high methane uptake on activated carbons prepared from mesophase pitch:A compromise between microporosity and bulk density[J]. Carbon, 2015, 93:11-21.
    Wan C, Li H, Wu M, et al. Spherical natural graphite coated by a thick layer of carbonaceous mesophase for use as an anode material in lithium ion batteries[J]. Journal of Applied Electrochemistry, 2009, 39(7):1081-1086.
    Cheng Y, Fang C, Su J, et al. Carbonization behavior and mesophase conversion kinetics of coal tar pitch using a low temperature molten salt method[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109:90-97.
    Mochida I, Maeda K, Takeshita K. Structure of anisotropic spheres obtained in course of needle coke formation[J]. Carbon, 1977, 15(1):17-23.
    Lee S, Eom Y, Kim B, et al. The thermotropic liquid crystalline behavior of mesophase pitches with different chemical structures[J]. Carbon, 2015, 81:694-701.
    Kumar S, Srivastava M. Catalyzing mesophase formation by transition metals[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112:192-200.
    Qian S, Li C, Zhang P. Study of structural parameters on some petroleum aromatic fractions by h-1-nmr ir and c-13, h-1-nmr spectroscopy[J]. Fuel, 1984, 63(2):268-273.
    Song H, Liu L, Qian S, et al. Structural features and formation mechanism of soluble fractions of mesophase pitch derived from 1,2,4,5-tetramethylbenzene methylene-bridged oligomer[J]. Fuel, 1996, 75(11):1331-1338.
    宋怀河, 陈晓红, 刘朗, 等. 重质稠环芳烃的固体核磁共振光谱研究[J]. 化学学报, 2001, 59(7):1130-1134. (SONG Hua-he, CHEN Xiao-hong, LIU Lang, et al. Structural studies of highly-condensed polyaromatics by solid state NMR[J]. Acta Chimica Sinica, 2001, 59(7):1130-1134.)
    任呈强, 李铁虎, 林起浪, 等. 煤沥青中间相的研究进展[J]. 材料导报, 2005, 19(2):50-56. (REN Chen-qiang, LI Tie-hu, LIN Qi-lang, et al. Development of mesophase prepared from coal-tar pitch[J]. Materials review, 2005, 19(2):50-56.)
    盛英,李克健,李文博,等. 煤直接液化残留物制备中间相沥青[J]. 煤炭学报, 2009, 34(8):1125-1128. (SHENG Ying, LI Ke-jian, LI Wen-bo, et al. Preparation of mesophase pitch using coal liquefaction residue[J]. Journal of China coal society, 2009, 34(8):1125-1128.)
    李伏虎,沈曾民,迟伟东,等. 两种不同原料中间相沥青分子结构的研究[J]. 炭素技术, 2009, 1(28):2-8. (LI Fu-hu, SHEN Zeng-min, CHI Wei-dong, et al. molecular structures of mesophase pitches prepared from different raw materials[J]. Carbon Techniques, 2009, 1(28):2-8.)
    Mochida I, Shimizu K, Korai Y, et al. Mesophase pitch catalytically prepared from anthracene with HF/BF3[J]. Carbon, 1992, 30(1):55-61.
    Skelton R, Dubois F, Zenobi R. A MALDI sample preparation method suitable for insoluble polymers[J]. Analytical Chemistry, 2000, 72(7):1707-1710.
    Przybilla L, Brand J, Yoshimura K, et al. MALDI-TOF mass spectrometry of insoluble giant polycyclic aromatic hydrocarbons by a new method of sample preparation[J]. Analytical Chemistry, 2000, 72(19):4591-4597.
    Yoshimura K, Przybilla L, Ito S, et al. Characterization of large synthetic polycyclic aromatic hydrocarbons by MALDI-and LD-TOF mass spectrometry[J]. Macromolecular Chemistry and Physics, 2001, 202(2):215-222.
    Trimpin S, Rouhanipour A, Az R, et al. New aspects in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry:a universal solvent-free sample preparation[J]. Rapid Communications in Mass Spectrometry, 2001, 15(15):1364-1373.
    Zhang W, Andersson J T, Räder H J, et al. Molecular characterization of large polycyclic aromatic hydrocarbons in solid petroleum pitch and coal tar pitch by high resolution MALDI ToF MS and insights from ion mobility separation[J]. Carbon, 2015, 95:672-680.
    Edwards W, Jin L, Thies M. MALDI-TOF mass spectrometry:Obtaining reliable mass spectra for insoluble carbonaceous pitches[J]. Carbon, 2003, 41(14):2761-2768.
    Edwards W, Thies M. Dense-gas fractionation and MALDI characterization of carbonaceous pitches[J]. Energy & Fuels, 2005, 19(3):984-991.
    Kulkarni S, Raeder H, Thies M. The effects of molecular weight distribution and sample preparation on matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of petroleum macromolecules[J]. Rapid Communications in Mass Spectrometry, 2011, 25(19):2799-2808.
    Kulkarni S, Thies M. Quantitative analysis of polydisperse systems via solvent-free matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2012, 26(3):392-398.
    Lima A, Lima K, Franca T, et al. Mesophase evolution in heat-treated solid petroleum pitches[J]. Journal of the Brazilian Chemical Society, 2012, 23(7):1355-1371.
    Esguerra D, Hoffman W, Thies M. Liquid crystallinity in trimer oligomers isolated from petroleum and pyrene pitches[J]. Carbon, 2014, 79(1):265-273.
    Lewis R T. Hot-stage microscopy of mesophase pitches[J]. Carbon, 1975, 13(6):545-545.
    Perrotta A, McCullough J, Beuther H. Pressure-temperature microscopy of petroleum-derived hydrocarbons[J]. Abstracts of Papers of the American Chemical Society, 1983, 185(MAR):22-PETR.
    Bagheri S, Gray M, Shaw J, et al. In situ observation of mesophase formation and coalescence in catalytic hydroconversion of vacuum residue using a stirred hot-stage reactor[J]. Energy & Fuels, 2012, 26(6):3167-3178.
    Marsh H, Latham C. The chemistry of mesophase formation[J]. Acs Symposium Series, 1986, 303:1-28.
    Bagheri S, Gray M, McCaffrey W. Depolarized light scattering for study of heavy oil and mesophase formation mechanisms[J]. Energy & Fuels, 2012, 26(9):5408-5420.
    Korai Y, Mochida I. Molecular assembly of mesophase and isotropic pitches at their fused states[J]. Carbon, 1992, 30(7):1019-1024.
    Fortin F, Yoon S, Korai Y, et al. Reorganization of molecular alignment in naphthalene and methyl-naphthalene derived pitches[J]. Carbon, 1994, 32(5):979-989.
    Mochida I, Yoon S, Takano N, et al. Microstructure of mesophase pitch-based carbon fiber and its control[J]. Carbon, 1996, 34(8):941-956.
    Yang H, Yoon S, Korai Y, et al. Improving graphitization degree of mesophase pitch-derived carbon fiber by solid-phase annealing of spun fiber[J]. Carbon, 2003, 41(3):397-403.
    Mochida I, Korai Y, Ku C, et al. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon, 2000, 38(2):305-328.
    Yoon S, Korai Y, Mochida I, et al. The flow properties of mesophase pitches derived from methylnaphthalene and naphthalene in the temperature-range of their spinning[J]. Carbon, 1994, 32(2):273-280.
    古立虎. 煤沥青流变性能及其改性研究[D]. 武汉科技大学,2004. (GU Li-hu. The investigation of rheological behavior and modification of coal-tar pitches[D]. Wuhan University of Science and Technology, 2004)
    刘锐剑. 煤沥青流变性能的评价和分析[D]. 武汉科技大学,2008. (LIU Rui-jian. The determination and Analysis of the rheological behavior of coal-tar pitches[D]. Wuhan University of Science and Technology, 2008)
    史景利,刘朗,查庆芳. 沥青流变性质的研究方法[J]. 炭素技术, 1996, 3:18-23. (SHI Jing-li, LIU Lang, ZHA Qing-fang. Methods of rheological measurement of pitch[J]. Carbon Techniques, 1996, 3:18-23.)
    刘早猛, 中间相沥青纤维纺丝工艺的研究[D]. 湖南大学,2012. (LIU Zao-meng, Investigation of mesophase pitch-based carbon fiber spinning process[D], Hunan University, 2012)
    Yoon S, Korai Y, Mochida I, et al. The flow properties of mesophase pitches derived from methylnaphthalene and naphthalene in the temperature-range of their spinning[J]. Carbon, 1994, 32(2):273-280.
    Yoon S, Korai Y, Mochida I. Spinning characteristics of mesophase pitches derived from naphthalene and methylnaphthalene with HF/BF3[J]. Carbon, 1993, 31(6):849-856.
    Asada T. Investigation of the three region flow curve of polymeric liquid crystals by rheo-optical methods[J]. Polymer Engineering & Science, 1993, 33(16):1022-1026.
    Fitzer E, Kompalik D, Yudatet K. Pitch:the science of a future material Rheological characteristics of coal-tar pitches[J]. Fuel, 1987, 66(11):1504-1511.
    秦显营, 吕永根, 杨常玲, 等. 沥青的流变性能及熔融纺丝[C]. 第八届全国新型炭材料学术研讨会, 2007
    JIN Ming-lin, CHENG Jie-ling, WANG Lian-xing, et al. Rheological properties of mesophase pitch investigated by the Giseeler fluidity method[J]. New Carbon Materials, 2015, 30(2):176-180. (金鸣林, 程洁羚, 王连星, 等. 基于基斯勒尔法中间相沥青的流变性质[J]. 新型炭材料, 2015, 30(2):176-180.)
    查庆芳, 史景利, 冀勇, 等. 中间相沥青的纺丝-中间相沥青的流变性和可纺性[J]. 炭素, 1990, 02:7-11(ZHA Qing-fang, SHI Jing-li, JI Yong, et al. Spinning of mesophase pitch-rheological and spinnability of mesophase pitch[J]. Carbon, 1990, 02:7-11.)
    Zha Q, Shi J, Ji Y, et al. The effect of composition and process variables on the spinnability of mesophase pitch[J]. Carbon, 1992, 30(5):739-745.
    Edie D. The effect of processing on the structure and properties of carbon fibers[J]. Carbon, 1998, 36(4):345-362.
  • 加载中
图(1)
计量
  • 文章访问数:  720
  • HTML全文浏览量:  176
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-02
  • 录用日期:  2018-06-26
  • 修回日期:  2018-06-03
  • 刊出日期:  2018-06-28

目录

    /

    返回文章
    返回