留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热法原位合成磁性BiFeO3-石墨烯杂化材料及其光催化性能

甘露 徐立杰 钱堃 王亚东 江富远

甘露, 徐立杰, 钱堃, 王亚东, 江富远. 水热法原位合成磁性BiFeO3-石墨烯杂化材料及其光催化性能. 新型炭材料, 2018, 33(3): 221-228.
引用本文: 甘露, 徐立杰, 钱堃, 王亚东, 江富远. 水热法原位合成磁性BiFeO3-石墨烯杂化材料及其光催化性能. 新型炭材料, 2018, 33(3): 221-228.
GAN Lu, XU Li-jie, QIAN Kun, WANG Ya-dong, JIANG Fu-yuan. Hydrothermal synthesis of magnetic graphene-BiFeO3 hybrids and their photocatalytic properties. New Carbon Mater., 2018, 33(3): 221-228.
Citation: GAN Lu, XU Li-jie, QIAN Kun, WANG Ya-dong, JIANG Fu-yuan. Hydrothermal synthesis of magnetic graphene-BiFeO3 hybrids and their photocatalytic properties. New Carbon Mater., 2018, 33(3): 221-228.

水热法原位合成磁性BiFeO3-石墨烯杂化材料及其光催化性能

基金项目: 江苏省自然科学基金项目(BK20160936);南京林业大学大学生实践创新训练计划项目(2016NFUSPITP056);南京林业大学大学生科技创新项目(DXSKC-201607);江苏省青蓝工程、江苏高校优势学科建设工程PAPD.
详细信息
    通讯作者:

    甘露,博士,副教授.E-mail:ganlu@njfu.edu.cn

  • 中图分类号: O643

Hydrothermal synthesis of magnetic graphene-BiFeO3 hybrids and their photocatalytic properties

Funds: Natural Science Foundation of Jiangsu Province, China (BK20160936); Students Practice Innovation and Training Program of Nanjing Forestry University (2016NFUSPITP056); Science and Technology Innovation Program of Nanjing Forestry University (DXSKC-201607); Qing Lan Project and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
  • 摘要: 采用水热法在石墨烯表面原位合成了石墨烯含量不同的铁酸铋/石墨烯(BiFeO3-石墨烯)杂化材料。采用X光射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)等研究杂化材料的结构,紫外漫反射光谱(DRS)和荧光光谱(PL spectra)分析其光反应性。在卤钨灯光照条件下测试杂化材料催化降解亚甲基蓝(MB)和罗丹明B (RhB)染料的性能。结果表明,通过水热原位合成法,石墨烯均匀地穿插在BiFeO3颗粒中并形成大小均一的球状结构。BiFeO3-石墨烯杂化材料在可见光范围(400~800 nm)的吸收强度明显增加,禁带能隙明显降低。BiFeO3-石墨烯杂化材料光催化降解有机污染物的速度较纯BiFeO3显著提高,其中石墨烯质量含量为3%的杂化材料具有最高的降解速度,其光催化降解MB和RhB的速率常数为0.083和0.10,均为纯BiFeO3降解染料速率的10倍以上,原因在于石墨烯有效地抑制并延后了激发电子和空穴的再结合。由于BiFeO3具有铁磁性,BiFeO3-石墨烯杂化材料可以用磁铁回收循环使用,且材料5次循环使用后染料降解效率仍可达到近100%。
  • Dong S, Feng J, Fan M, et al. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts:a review[J]. RSC Adv, 2015, 5(19):14610-14630.
    Anjusree GS, Nair AS, Nair SV, et al. One-pot hydrothermal synthesis of TiO2/graphene nanocomposites for enhanced visible light photocatalysis and photovoltaics[J]. RSC Adv, 2013, 3(31):12933-12938.
    Lai Q, Luo XP, Zhu SF. Titania nanotube-graphene oxide hybrids with excellent photocatalytic activities[J]. New Carbon Mater, 2016, 31(2):121-128.
    He T, Zhou Z, Xu W, et al. Visible-light photocatalytic activity of semiconductor composites supported by electrospun fiber[J]. Compos Sci Technol, 2010, 70(10):1469-1475.
    Ko S, Banerjee CK, Sankar J. Photochemical synthesis and photocatalytic activity in simulated solar light of nanosized Ag doped TiO2 nanoparticle composite[J]. Compos Part B-Eng, 2011, 42(3):579-583.
    Zhu L, Meng ZD, Cho KY, et al. Synthesis of CdS/CNT-TiO2 with a high photocatalytic activity in photodegradation of methylene blue[J]. New Carbon Mater, 2012, 27(3):166-174.
    Qiao X, Huang Y, Cheng H, et al. Surface properties, simultaneous photocatalytic and magnetic activities of Ni2FeVO6 nanoparticles[J]. Appl Surf Sci, 2015, 359:259-265.
    Xu LJ, Chu W, Gan L. Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer[J]. Chem Eng J, 2015, 263(0):435-443.
    Gan L, Shang SM, Yuen CWM, et al. Hydrothermal synthesis of magnetic CoFe2O4/graphene nanocomposites with improved photocatalytic activity[J]. Appl Surf Sci, 2015, 351:140-147.
    Yang YC, Liu Y, Wei JH, et al. Electrospun nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity[J]. RSC Adv, 2014, 4(60):31941-31947.
    Zaki MI, Ramadan W, Katrib A, et al. Surface chemical and photocatalytic consequences of Ca-doping of BiFeO3 as probed by XPS and H2O2 decomposition studies[J]. Appl Surf Sci, 2014, 317:929-934.
    Upadhyay RK, Soin N, Roy SS. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment:a review[J]. RSC Adv, 2014, 4(8):3823-3851.
    Gan L, Shang SM, Yuen CWM, et al. Graphene nanoribbon coated flexible and conductive cotton fabric[J]. Compos Sci Technol, 2015, 117:208-214.
    Gan L, Shang SM, Yuen CWM, et al. Covalently functionalized graphene with d-glucose and its reinforcement to poly(vinyl alcohol) and poly(methyl methacrylate)[J]. RSC Adv, 2015, 5(21):15954-15961.
    Gan L, Shang SM, Jiang SX. Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites[J]. Compos Part B-Eng, 2016, 84:294-300.
    Gan L, Xu LJ, Shang SM, et al. Visible light induced methylene blue dye degradation photo-catalyzed by WO3/Graphene nanocomposites and the mechanism[J]. Ceram Int, 2016, 42:15235-15241.
    Wang X-w, Zhou L, Li F. ZnO disks loaded with reduced graphene oxide for the photodegradation of methylene blue[J]. New Carbon Mater, 2013, 28(6):408-413.
    Dai JF, Xian T, Di LJ, et al. Preparation of BiFeO3-hraphene nanocomposites and their enhanced photocatalytic activities[J]. J Nanomater, 2013, 642897.
    Gan L, Shang SM, Hu EL, et al. Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange[J]. Appl Surf Sci, 2015, 357, Part A:866-872.
    Hengky C, Moya X, Mathur ND, et al. Evidence of high rate visible light photochemical decolourisation of Rhodamine B with BiFeO3 nanoparticles associated with BiFeO3 photocorrosion[J]. RSC Adv, 2012, 2(31):11843-11849.
    Li Z, Young RJ, Wilson NR, et al. Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites[J]. Compos Sci Technol, 2016, 123:125-133.
    Tan L, Gan L, Hu J, et al. Functional shape memory composite nanofibers with graphene oxide filler[J]. Compos Part A-Appl S, 2015, 76 Part A:115-123.
    Kuila T, Bose S, Khanra P, et al. Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites[J]. Compos Part A-Appl S, 2011, 42(11):1856-1861.
    Chauhan S, Kumar M, Chhoker S, et al. Substitution driven structural and magnetic transformation in Ca-doped BiFeO3 nanoparticles[J]. RSC Adv, 2016, 6(49):43080-43090.
    Peng L, Deng H, Tian J, et al. Influence of Co doping on structural, optical and magnetic properties of BiFeO3 films deposited on quartz substrates by sol-gel method[J]. Appl Surf Sci, 2013, 268:146-150.
    Li P, Chen Q, Lin Y, et al. Effects of crystallite structure and interface band alignment on the photocatalytic property of bismuth ferrite/(N-doped) graphene composites[J]. J Alloy Compd, 2016, 672:497-504.
    Li ZX, Shen Y, Yang C, et al. Significant enhancement in the visible light photocatalytic properties of BiFeO3-graphene nanohybrids[J]. J Mater Chem A, 2013, 1(3):823-829.
    Sun A, Chen H, Song C, et al. Magnetic BiFeO3-graphene catalyst and its high visible-light photocatalytic performance[J]. RSC Adv, 2013, 3(13):4332-4340.
    Ao Y, Xu L, Wang P, et al. Graphene and TiO2 co-modified flower-like Bi2O2CO3:A novel multi-heterojunction photocatalyst with enhanced photocatalytic activity[J]. Appl Surf Sci, 2015, 355:411-418.
    An X, Jimmy CY. Graphene-based photocatalytic composites[J]. RSC Adv, 2011, 1(8):1426-1434.
    Ao Y, Tang H, Wang P, et al. Synthesis, characterization and photocatalytic activity of BiOBr-AC composite photocatalyst[J]. Compos Part B-Eng, 2014, 59(0):96-100.
    Luo L, Yang Y, Zhang A, et al. Hydrothermal synthesis of fluorinated anatase TiO2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A[J]. Appl Surf Sci, 2015, 353:469-479.
    Saranya M, Ramachandran R, Kollu P, et al. A template-free facile approach for the synthesis of CuS-rGO nanocomposites towards enhanced photocatalytic reduction of organic contaminants and textile effluents[J]. RSC Adv, 2015, 5(21):15831-15840.
  • 加载中
图(1)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  116
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-01
  • 录用日期:  2018-06-26
  • 修回日期:  2018-06-10
  • 刊出日期:  2018-06-28

目录

    /

    返回文章
    返回