留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米纤维矿物纤蛇纹石为模板合成多孔炭及其在超级电容器中的应用

曹曦 传秀云 李爱军 黄杜斌

曹曦, 传秀云, 李爱军, 黄杜斌. 纳米纤维矿物纤蛇纹石为模板合成多孔炭及其在超级电容器中的应用. 新型炭材料, 2018, 33(3): 229-236.
引用本文: 曹曦, 传秀云, 李爱军, 黄杜斌. 纳米纤维矿物纤蛇纹石为模板合成多孔炭及其在超级电容器中的应用. 新型炭材料, 2018, 33(3): 229-236.
CAO Xi, CHUAN Xiu-yun, LI Ai-jun, HUANG Du-bin. Preparation of porous carbons using a chrysotile template and their electrochemical performance as supercapacitor electrodes. New Carbon Mater., 2018, 33(3): 229-236.
Citation: CAO Xi, CHUAN Xiu-yun, LI Ai-jun, HUANG Du-bin. Preparation of porous carbons using a chrysotile template and their electrochemical performance as supercapacitor electrodes. New Carbon Mater., 2018, 33(3): 229-236.

纳米纤维矿物纤蛇纹石为模板合成多孔炭及其在超级电容器中的应用

基金项目: 国家自然科学基金(51774016);中国博士后科学基金(2017M610017).
详细信息
    作者简介:

    传秀云,教授.E-mail:xychuan@pku.edu.cn

    通讯作者:

    曹曦,博士,博士后.E-mail:xicaochem@pku.edu.cn

  • 中图分类号: TQ127.1+1

Preparation of porous carbons using a chrysotile template and their electrochemical performance as supercapacitor electrodes

Funds: National Natural Science Foundation of China (51774016); China Postdoctoral Science Foundation Funded Project (2017M610017).
  • 摘要: 以天然纳米纤维矿物纤蛇纹石为模板,蔗糖为碳源,合成了具有一维管状形貌的多级孔结构炭材料。通过调控模板与碳源的比例,可以改变炭材料的孔结构分布和比表面积。当纤蛇纹石与蔗糖的质量比为1∶3.0时,模板炭的中大孔比例较高,达到87%,作为双电层电容器(EDLC)储能材料的电化学性能最佳,比电容最大:在6 M KOH三电极条件下,0.5 A/g电流密度条件时容量可达150 F/g,在20 A/g时,比电容仍能保持75%。以10 A/g电流密度循环10 000次,比电容没有明显损失,仍达到119 F/g。
  • 张文峰. 针状中孔结构炭基材料的制备及其超电容性能研究[D]. 北京:清华大学, 2012. (Zhang W F. Preparation of carbon based materials with needle-like mesoprous structure and their Properties in supercapacitors[D]. Beijing:Tsinghua University, 2012.)
    Fuertes A B, Sevilla M. Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors[J]. ACS Appl Mater Interfaces, 2015, 7:4344-4353.
    郑冬芳, 贾梦秋, 徐斌, 等. 高性能超级电容器用高比表面积、层次孔结构炭材料的简便制备[J]. 新型炭材料, 2013, 28(2):151-155. (Zheng D F, Jia M Q, Xu B, et al. The simple preparation of a hierarchical porous carbon with high surface area for high performance supercapacitors[J]. New Carbon Mater, 2013, 28(2):151-155.)
    Wang Q, Cao Q, Wang X Y, et al. Dual template method to prepare hierarchical porous carbon nanofibers for high-power supercapacitors[J]. J Solid State Electr, 2013, 17:2731-2739.
    Geng W D, Ma F W, Wu G. et al. MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors[J]. Electrochimi Acta, 2016, 191:854-863.
    Jiang H, Lee P S, Li C Z. 3D carbon based nanostructures for advanced supercapacitors[J]. Energ Environ Sci, 2013, 6:41-53.
    Cheng Q L, Xia Y M, Pavlinek V, et al. Effects of macropore size on structural and electrochemical properties of hierarchical porous carbons[J]. J Mater Sci, 2012, 47:6444-6450.
    金双玲, 邓洪贵, 詹亮, 等. 用作双电层电容器电极材料的三维层次孔结构多孔炭的合成[J]. 新型炭材料, 2012, 27(2):87-92. (Jin S L, Deng H G, Zhan L, et al. Synthesis of 3D hierarchical porous carbon as an electrode material for electric double layer capacitors[J]. New Carbon Mater, 2012, 27(2):87-92.)
    Han Y, Dong X, Zhang C, et al. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material[J]. J Power Sources, 2012, 211:92-96.
    Guo C X, Li C M. A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance[J]. Energ Environ Sci, 2011, 4:4504-4507.
    Xing W, Zhuo S, Gao X, et al. Preparation of micro-meso hierarchical porous carbon and studies in its electrochemical capacitive performances[J]. Acta Chim Sinica, 2009, 67:1430-1436.
    Zhang L, Zhao X. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38:2520-2531.
    Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. J Am Chem Soc, 2008, 130:2730-2731.
    Zhang J, Jin L, Cheng J, et al. Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes[J]. Carbon, 2013, 55:221-232.
    Wang D W, Li F, Liu M, et al. 3D Aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy Storage[J]. Angew Chem Int Edit, 2008, 47:373-376.
    王爱平, 康飞宇, 黄正宏, 等. 沸石矿模板炭的制备及其纳米孔的形成机理[J]. 新型炭材料, 2007, 22(2):141-147. (Wang A P, Kang F Y, Huang Z H, et al. Preparation of natural zeolite template carbon and its nanopore formation mechanism[J]. New Carbon Mater, 2007, 22(2):141-147.)
    Shi L M, Yao J F, Jiang J L, et al. Preparation of mesopore-rich carbons using attapulgite as templates and furfurl alcohol as carbon source through a vapor deposition polymerization methold[J]. Micropor Mesopor Mat, 2009, 122:294-300.
    Wang A P, Kang F Y, Huang Z H, et al. Synthesis of mesoporous carbon nanosheets using tubular halloysite and furfuryl alcohol by a template-like method[J]. Micropor Mesopor Mat, 2008, 108:318-324.
    周述慧, 传秀云. 埃洛石为模板合成中孔炭[J]. 无机材料学报, 2014, 29(6):584-588. (Zhou S H, Chuan X Y. Synthesis of mesoporous carbon using halloyiste as template[J]. J Inorg Mater, 2014, 29(6):584-588.)
    Li C P, Liu J G, Qu X Z, et al. Polymer-modified halloysite composite nanotubes[J]. J Appl Polym Sci, 2008, 110:3638-3646.
    Liu D, Yuan P, Tan D Y, et al. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products[J]. J Colloid Interface Sci, 2012, 388(1):176-184.
    李学军, 王丽娟, 鲁安怀, 等. 天然蛇纹石活性机理初探[J]. 岩石矿物学杂志, 2003, 04:386-390. (Li X J, Wang L J, Lu A H, et al. A discussion on activation mechanism of atom groups in serpentine[J]. Acta Petrologica Et Mineralogica, 2003, 04:386-390.)
    王长秋, 王丽娟, 鲁安怀. 纤蛇纹石在纳米材料及环境科学中的意义[J]. 岩石矿物学杂志, 2003, 04:409-412. (Wang C Q, Wang L J, Lu A H. Chrysotile and its significance in new nano_material and environment science[J]. Acta Petrologica Et Mineralogica, 2003, 04:409-412.)
    曹曦, 传秀云, 黄杜斌. 天然纳米管纤蛇纹石的结构性能和应用研究[J]. 功能材料, 2013, 44:1984-1989. (Cao X, Chuan X Y, Huang D B. Structure performance and application research of natural nano-tubular chrysotile[J]. Journal of Functional Materials, 2013, 44:1984-1989.)
    Liu H F, Peng T J, Ma G H, et al. Simple chemical solution coating and gas sensing properties of α-Fe2O3/chrysotile fibrous composites[J]. Appl Surf Sci, 2012, 258(11):4866-4870.
    Carolina Vautier-Giongo, Inés Joekes. Deposition of titanium dioxide on Brazilian chrysotile fibres[J]. Powder Technol, 1997, 94(1):73-78.
    Wang A P, Kang F Y, Huang Z H, et al. Preparation of porous carbons from halloysite-sucrose mixtures[J]. Clay Clay Miner, 2006, 54(4):485-490.
    Bandosz T J, Jagiello J, Putyera K, et al. Pore structure of carbon-mineral nanocomposites and derived carbons obtained by template carbonization[J]. Chem Mater, 1996, 8(8):2023-2029.
    齐进英, 江绍英. 与蛇纹石石棉共生的几种矿物[J]. 非金属矿, 1982(02):20-25.7, 23. (Qi J Y, Jiang S Y. Several minerals symbiotic with serpentine asbestos[J]. Non-Metallic Mines, 1982(02):20-25.7, 23.)
    Gregg S J and Sing K S W. Adsorption, surface area and porosity[M].1982, Academic Press, London.
    谭明慧, 郑经堂, 李朋, 等. 超级电容器用高性能石油焦基多孔炭的制备及改性[J]. 新型炭材料, 2016, 31(3):343-351. (Tan M H, Zheng J T, Li P, et al. Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes[J]. New Carbon Mater, 2016, 31(3):343-351.)
    Han Y, Dong X, Zhang C, et al. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material[J]. J Power Sources, 2012, 211:92-96.
    周鹏伟, 李宝华, 康飞宇, 等. 椰壳活性炭基超级电容器的研制与开发[J]. 新型炭材料, 2006, 21(2):125-131. (Zhou P W, Li B H, Kang F Y, et al. The development of supercapacitors from coconut-shell activated carbon[J]. New Carbon Mater, 2006, 21(2):125-131.)
    Zhou J H, He J P, Zhang C X, et al. Mesoporous carbon spheres with uniformly penetrating channels and their use as a supercapacitor electrode material[J]. Mater Charact, 2010, 61:31-38.
  • 加载中
图(1)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  104
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-27
  • 录用日期:  2018-06-26
  • 修回日期:  2018-05-30
  • 刊出日期:  2018-06-28

目录

    /

    返回文章
    返回