留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固相增密燃料元件基体石墨的氩离子辐照性能研究

许六军 王浩然 林俊 许红霞 张锋 仲亚娟 朱智勇 郭全贵

许六军, 王浩然, 林俊, 许红霞, 张锋, 仲亚娟, 朱智勇, 郭全贵. 固相增密燃料元件基体石墨的氩离子辐照性能研究. 新型炭材料, 2018, 33(3): 268-275.
引用本文: 许六军, 王浩然, 林俊, 许红霞, 张锋, 仲亚娟, 朱智勇, 郭全贵. 固相增密燃料元件基体石墨的氩离子辐照性能研究. 新型炭材料, 2018, 33(3): 268-275.
XU Liu-jun, WANG Hao-ran, LIN Jun, XU Hong-xia, ZHANG Feng, ZHONG Ya-juan, ZHU Zhi-yong, GUO Quan-gui. The effect of Ar ion beam irradiation on mesocarbon microbead-densified graphite as the matrix of fuel elements in molten-salt nuclear reactors. New Carbon Mater., 2018, 33(3): 268-275.
Citation: XU Liu-jun, WANG Hao-ran, LIN Jun, XU Hong-xia, ZHANG Feng, ZHONG Ya-juan, ZHU Zhi-yong, GUO Quan-gui. The effect of Ar ion beam irradiation on mesocarbon microbead-densified graphite as the matrix of fuel elements in molten-salt nuclear reactors. New Carbon Mater., 2018, 33(3): 268-275.

固相增密燃料元件基体石墨的氩离子辐照性能研究

基金项目: 中国科学院战略性先导科技专项(XDA02030200);中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC016);中国科学院炭材料重点实验室开放课题资助项目(KLCMKFJJ1711).
详细信息
    作者简介:

    许六军,硕士研究生.E-mail:xuliujun@sinap.ac.cn

    通讯作者:

    仲亚娟,副研究员.E-mail:zhongyajuan@sinap.ac.cn;朱智勇,研究员.E-mail:zhuzhiyong@sinap.ac.cn

  • 中图分类号: TQ165

The effect of Ar ion beam irradiation on mesocarbon microbead-densified graphite as the matrix of fuel elements in molten-salt nuclear reactors

Funds: Thorium Molten Salt Reactor Nuclear Energy System under the Strategic Pioneer Sci. & Tech. Project of Chinese Academy of Sciences (XDA02030200); Frontier Science Key Program of the Chinese Academy of Sciences (QYZDY-SSW-JSC016); CAS Key Laboratory of Carbon Materials (KLCMKFJJ1711).
  • 摘要: 为提高熔盐堆燃料元件基体石墨的致密性,采用准等静压工艺,对球形燃料元件A3-3基体石墨进行中间相炭微球(MCMB)固相增密,并对其进行了氩离子辐照性能研究。通过压汞测试研究了增密后基体石墨的进汞临界压强和平均孔径变化;利用氩离子辐照实验并结合纳米压痕技术和拉曼光谱分析,研究了固相增密前后基体石墨的离子辐照效应。结果表明,采用平均粒径为2、10和16 μm的MCMB对基体石墨A3-3增密后,基体石墨孔径由924 nm分别降至530、573和644 nm,MCMB以其自烧结同步收缩的特性,起到了填充孔隙和裂缝的作用,实现了对基体石墨的固相增密。MCMB增密剂粒径越接近基体石墨的孔径,增密后基体石墨的平均孔径越小,进汞临界压强越高,即增密效果越好。样品纳米压痕的测试表明高剂量离子辐照下(> 1 dpa),MDG2-15(粒径2 μm,质量百分数为15%的MCMB增密基体石墨)石墨比A3-3石墨的离子辐照硬化速率慢。拉曼光谱结果显示增密前后基体石墨在1.47 dpa剂量下,均发生非晶化,致密化调控前后基体石墨的离子辐照效应表现出一致性。
  • Spencer B B, Mattus C H, Cul D, et al. Scoping experiments on processing of spent TRISO-Coated GEN IV reactor fuels[C]. Ans Winter Meeting, 2004.
    Song J, Zhao Y, Zhang J, et al. Preparation of binderless nanopore-isotropic graphite for inhibiting the liquid fluoride salt and Xe-135, penetration for molten salt nuclear reactor[J]. Carbon, 2014, 79(1):36-45.
    Song Y, Zhai G, Li G, et al. Carbon/graphite seal materials prepared from mesocarbon microbeads[J]. Carbon, 2004, 42(8-9):1427-1433.
    Li S, Song Y, Song Y, et al. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch[J]. Carbon, 2007, 45(10):2092-2097.
    Shen K, Huang Z H, Shen W, et al. Homogenous and highly isotropic graphite produced from mesocarbon microbeads[J]. Carbon, 2015, 94:18-26.
    郁金南. 材料辐照效应[M]. 化学工业出版社, 2007:81.
    Ishiyama S, Burchell T D, Strizak J P, et al. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite[J]. Journal of Nuclear Materials, 1996, 230(1):1-7.
    Bocquet, Micaud. Effects of neutron irradiation on the thermal conductivity of nuclear graphite[J]. Journal of Nuclear Materials, 1963, 10.
    Zhou Z, Bouwman W G, Schut H, et al. Influence of neutron irradiation on the microstructure of nuclear graphite:An X-ray diffraction study[J]. Journal of Nuclear Materials, 2017, 487.
    Karthik C, Kane J, Butt D P, et al. Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites[J]. Carbon, 2015, 86:124-131.
    Pedraza D F, Koike J. Dimensional changes in grade H-451 nuclear graphite due to electron irradiation[J]. Carbon, 1994, 32(4):727-734.
    Takeuchi M, Muto S, Tanabe T, et al. Structural change in graphite under electron irradiation at low temperatures[J]. Journal of Nuclear Materials, 1999, s 271-272(271-272):280-284.
    Freeman H M, Scott A J, Brydson R. Thermal annealing of nuclear graphite during in-situ electron irradiation[J]. Carbon, 2017, 115:659-664.
    Atsumi H, Yamanaka S, Son P, et al. Thermal desorption of deuterium and helium from ion irradiated graphite[J]. Journal of Nuclear Materials, 1985, 133(85):268-271.
    Yang S J, Choe J M, Jin Y G, et al. Influence of H+, ion irradiation on the surface and microstructural changes of a nuclear graphite[J]. Fusion Engineering & Design, 2012, 87(4):344-351.
    Chi S H, Kim G C. Comparison of 3 MeV C+, ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes[J]. Journal of Nuclear Materials, 2006, 381(1):98-105.
    Tsai S C, Huang E W, Kai J J, et al. Microstructural evolution of nuclear grade graphite induced by ion irradiation at high temperature environment[J]. Journal of Nuclear Materials, 2013, 434(1-3):17-23.
    Ammar M R, Galy N, Rouzaud J N, et al. Characterizing various types of defects in nuclear graphite using Raman scattering:Heat treatment, ion irradiation and polishing[J]. Carbon, 2015, 95(10):364-373.
    Lasithiotakis M, Marsden B J, Marrow T J. Annealing of ion irradiation damage in nuclear graphite[J]. Journal of Nuclear Materials, 2013, 434(1-3):334-346.
    唐春和. 高温气冷堆燃料元件[M]. 化学工业出版社, 2007:44,206.
    Theodosiou A, Carley A F, Taylor S H. A Raman investigation into the effect of temperature on ion-induced damage of graphite[J]. Journal of Nuclear Materials, 2012, 426(1-3):26-30.
    Asari E. An effect of the extended cascade on the Raman spectra of ion-irradiated graphite[J]. Carbon, 2000, 38(13):1857-1861.
    Schulze RE, Schulze HA, Rind W. Graphitic matrix materials for spherical HTR fuel elements[R]. 1982 Jül-Spez-167, 3-5.
    G.L. Montet. Threshold energy for the displacement of atoms in graphite[J]. Carbon, 1967, 11(2):89, IN1, 91-90, IN1, 92.
    Miyazawa T, Nagasaka T, Kasada R, et al. Evaluation of irradiation hardening of ion-irradiated V-4Cr-4Ti and V-4Cr-4Ti-0.15Y alloys by nanoindentation techniques[J]. Journal of Nuclear Materials, 2014, 455(1-3):440-444.
    C. Heintze, F. Bergner, M. Hernández-Mayoral. Ion-irradiation-induced damage in Fe-Cr alloys characterized by nanoindentation[J]. Journal of Nuclear Materials, 2011, 417(1-3):980-983.
    Dresselhaus M S, Dresselhaus G, Sugihara K, et al. Graphite Fibers and Filaments[M]. Springer Berlin Heidelberg, 1988.
    Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B Condensed Matter, 2008, 61(20):14095-14107.
    Vidano R, Fischbach D B. ChemInform Abstract:New lines in the raman spectra of carbons and graphite[J]. Journal of the American Ceramic Society. 1978; 61(1-2):13-17.
    Ferrari A C, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Physical Review B Condensed Matter, 2001; 64(7).
    Mathur M S, Derenchuk V P, Mckee J S C. Raman spectra of a graphite surface implanted with D2+[J]. Canadian Journal of Physics, 1984, 62(3):214-217.
    Elman B S, Mazurek H, Dresselhaus M S, et al. Raman spectra of ion implanted graphite[J]. B Am Phys Soc. 1981, 26(1):60-67.
    R. H. Telling, M. I. Heggie. Radiation defects in graphite[J]. Philosophical Magazine, 2007, 87(31):4797-4846.
  • 加载中
图(1)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  67
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-26
  • 录用日期:  2018-06-26
  • 修回日期:  2018-06-08
  • 刊出日期:  2018-06-28

目录

    /

    返回文章
    返回