留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂氟电池用高倍率氟化多壁碳纳米管正极材料

陈珑 孙晓刚 邱治文 蔡满园

陈珑, 孙晓刚, 邱治文, 蔡满园. 锂氟电池用高倍率氟化多壁碳纳米管正极材料. 新型炭材料, 2018, 33(4): 324-332.
引用本文: 陈珑, 孙晓刚, 邱治文, 蔡满园. 锂氟电池用高倍率氟化多壁碳纳米管正极材料. 新型炭材料, 2018, 33(4): 324-332.
CHEN Long, SUN Xiao-gang, QIU Zhi-wen, CAI Man-yuan. Fluorinated multiwall carbon nanotubes for high rate lithium ion primary batteries. New Carbon Mater., 2018, 33(4): 324-332.
Citation: CHEN Long, SUN Xiao-gang, QIU Zhi-wen, CAI Man-yuan. Fluorinated multiwall carbon nanotubes for high rate lithium ion primary batteries. New Carbon Mater., 2018, 33(4): 324-332.

锂氟电池用高倍率氟化多壁碳纳米管正极材料

基金项目: 江西省教育厅(KJLD13006);江西省科技厅科研项目(20142BBE50071).
详细信息
    作者简介:

    陈珑,硕士研究生.E-mail:1083192075@qq.com

    通讯作者:

    孙晓刚,教授.E-mail:xiaogangsun@163.com

  • 中图分类号: TQ127.1+1

Fluorinated multiwall carbon nanotubes for high rate lithium ion primary batteries

Funds: Jiangxi Education Fund of China (KJLD13006); Jiangxi Scientific Fund of China (20142BBE50071).
  • 摘要: 研究了相同氟碳比的氟化石墨(F-graphtie)和氟化多壁碳纳米管(F-MWCNTs)的电化学性能。高纯石墨化多壁碳纳米管经氟化处理后,获得一种核壳结构的F-WMCNTs (氟碳原子比C/F=1∶1)。经TEM、XRD、XPS表征表明,F-WMCNTs外层被氟化,形成氟化碳结构,而内层依然保持原有的石墨结构。以此F-WMCNTs作正极活性材料组装成锂氟(Li/CFx)一次电池。经电化学测试表明,在相同的放电倍率下,对比F-graphite电极(C/F=1∶1),F-WMCNTs电极能够有效提高Li/CFx一次电池的放电容量和电压平台。大倍率(≥1 C)放电时,尤其明显。当放电倍率为0.05 C时,F-WMCNTs极和F-graphite电极比容量分别为822 mAh/g和786.1 mAh/g,F-WMCNTs电极放电容量比F-graphite电极提高4.5%。当放电倍率为2 C时,F-WMCNTs电极和F-graphite电极分别达到375.4 mAh/g和283.7 mAh/g,F-WMCNTs电极的放电比容量比F-graphite电极提高了32.2%。F-WMCNTs电极显示出优异的倍率性能。
  • Zhang S S, Foster D, Read J. Carbothermal treatment for the improved discharge pe-rformance of primary Li/CFx, battery[J]. Journal of Power Sources, 2009, 191(2):648-652.
    Zhang S S, Foster D, Wolfenstine J, et al. Electrochemical characteristic and dischar-ge mechanism of a primary Li/CFx cell[J]. Journal of Power Sources, 2009, 187(1):233-237.
    韩秀栋. 氟化石墨/导电聚合物复合材料的制备及其电化学性能研究[D]. 天津:天津大学, 2012(HAN Xiu-dong. Preparation and Electrochemical Properties of Graphite Fluoride/C-onductive Polymer Composites[D]. Tianjin:Tianjin University.)
    Rangasamy E, Li J, Sahu G, et al. Pushing the theoretical limit of Li-CF(x) batteries:a tale of bifunctional electrolyte[J]. Journal of the American Chemical Society, 2014, 136(19):6874-6877.
    Yazami R, Ozawa Y, Shu M, et al. The Kinetics of sub-fluorinated carbon fluoride cathodes for lithium batteries[J]. Ecs Transactions, 2007, 3(36).
    Yazami R, Hamwi A, Guérin K, et al. Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries[J]. Electrochemistry Communicatio ns, 2007, 9(7):1850-1855.
    Zhang S S, Foster D, Read J. A low temperature electrolyte for primary Li/CFx batt-eries[J]. Journal of Power Sources, 2009, 188(2):532-537.
    Zhang S S, Foster D, Read J. Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material[J]. Journal of Power Sources, 2009, 188(2):601-605.
    Yazami R, Hamwi A, Guérin K, et al. Fluorinated carbon nanofibres for high energy-and high power densities primary lithium batteries[J]. Electrochemistry Communications, 2007, 9(7):1850-1855.
    Gupta V, Nakajima T, Ohzawa Y, et al. A study on the formation mechanism of gr-aphite fluorides by Raman spectroscopy[J]. Journal of Fluorine Chemistry, 2003, 120(2):143-150.
    Pang C, Ding F, Sun W, et al. A novel dimethyl sulfoxide/1,3-dioxolane based elect-rolyte for lithium/carbon fluorides batteries with a high discharge voltage plateau[J]. Electrochimica Acta, 2015, 174:230-237.
    Nagasubramanian G, Sanchez B. A new chemical approach to improving discharge capacity of Li/(CFx)n, cells[J]. Journal of Power Sources, 2007, 165(2):630-634.
    Lam P, Yazami R. Physical characteristics and rate performance of (CFx)n (0.33 x<0.66) in lithium batteries[J]. Journal of Power Sources, 2006, 153(2):354-359.
    Li Y. The improved discharge performance of Li/CFx batteries by using multi-walled carbon nanotubes as conductive additive[J]. Journal of Power Sources, 2011, 196(196):2246-2250.
    Hany P, Yazami R, Hamwi A. Low-temperature carbon fluoride for high power den-sity lithium primary batteries[J]. Journal of Power Sources, 1997, 68(2):708-710.
    Chong Y B, Ohara H. Modification of carbon fiber surfaces by direct fluorination[J]. Journal of Fluorine Chemistry, 1992, 57(1-3):169-175.
    Mickelson E T, Huffman C B, Rinzler A G, et al. Fluorination of single-wall carbo-n nanotubes. Chem Phys Lett 296:188[J]. Chemical Physics Letters, 1998, 296(1-2):188-194.
    李瑀, 陈彦芳, 冯奕钰,等. 氟化碳纳米管的制备方法及相关性质研究进展[J]. 中国科学:技术科学, 2010(7):727-736. (LI Yu, CHEN Yan-fang, FENG Yi-yu, et al. Progress of synthesizing methods and propertie of fluorinated carbon nanotubes[J]. Science China Press, 2010(7):727-736.)
    Zhang S S, Foster D, Read J. Carbothermal treatment for the improved discharge p-erformance of primary Li/CFx, battery[J]. Journal of Power Sources, 2009, 191(2):648-652.
    Yanyan Tian, Hongjun Yue, Zhengliang Gong, et al. Enhanced electrochemical performance of fluorinanted carbon cathode for Li-O2 primary batteries[J]. Electrochimica Acta 2013, 90:186-193.
    Jayasinghe R, Thapa A K, Dharmasena R R, et al. Optimization of multi-walled carbon Nanotube based CFx, electrodes for improved primary and secondary battery performances[J]. Journal of Power Sources, 2014, 253(5):404-411.
    卢振明, 赵东林, 刘云芳,等. 石墨化处理对碳纳米管结构的影响[J]. 材料热处理学报, 2005, 26(6):9-11. (LU zhen-ming, ZHAO Dong-lin, LIU Yun-fang, et al. The influence of graphitization on the structure of carbon nanotubes[j]. Transaction of Materials and heat treatment, 2005, 26(6):9-11.)
    张琳琳, 许钫钫, 冯景伟, 等. 石墨化对碳纳米管结构与电学性能的影响[J]. 无机材料学报, 2009, 24(3):535-538. (ZHANG Lin-lin, XU Fang-fang, FENG Jing-wei, et al. Effect of graphitization on the sturctures and conducting property of carbon nanotubes[J]. Journal of Inorgan Materials, 2009, 24(3):535-538.)
    王海帆, 魏伟, 秦磊, 等. 碳纳米管的微观结构调节对锂空气电池电化学行为的影响[J]. 新型炭材料, 2016, 31(3):307-314. (WAN Hai-fan, WEI Wei, QING Lei, et al. Influrence of the KOH activation of car-bon nanotubes on their electrochemical behavior in lithium-air batteries[J]. New Carbon Materials, 2016,31(3):307-314.)
    Yang C, Chen C, Pan Y, et al. Flexible highly specific capacitance aerogel electrod-esbased on cellulose nanofibers, carbon nanotubes and polyaniline[J]. Electrochimica Acta, 2015, 182:264-271.
    Jayasinghe R, Thapa A K, Dharmasena R R, et al. Optimization of multi-walled carbon nanotube based CFx electrodes for improved primary and secondary battery performances[J]. Journal of Power Sources, 2014, 253(5):404-411.
    Tao H, Mukoyama D, Nara H, et al. Electrochemical impedance spectroscopy analy-sisfor lithium-ion battery using Li4Ti5O12 anode[J]. Journal of Power Sources, 2013, 222(2):442-447.
    庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, 22(6):1044-1057. (ZHUANG Quan-chao, XU Shou-dong, QIU Xiangyun, et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2010, 22(6):1044-1057.)
    Li X, Kang F, Bai X, et al. A novel network composite cathode of LiFePO/multiw-alled carbon nanotubes with high rate capability for lithium ion batteries[J]. Electrochemistry Communications, 2007, 9(4):663-666.
    Li X, Kang F, Shen W. Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2, cathode for rechargeable lithium batteries[J]. Carbon, 2006, 44(7):1334-1336.
    Li X, Kang F, Shen W. A comparative investigation on multiwalled carbon nanotub-es and carbon black as conducting additive in LiNi0.7Co0.3O2[J]. Electrochemical and Solid-State Letters, 2006, 9(3).
  • 加载中
图(1)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  115
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-28
  • 录用日期:  2018-08-30
  • 修回日期:  2018-07-29
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回