留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素纳米纤丝-碳纳米管/天然橡胶柔性导电弹性体的合成与性能

韩景泉 陆凯悦 岳一莹 梅长彤 王慧祥 严鹏彬 徐信武

韩景泉, 陆凯悦, 岳一莹, 梅长彤, 王慧祥, 严鹏彬, 徐信武. 纤维素纳米纤丝-碳纳米管/天然橡胶柔性导电弹性体的合成与性能. 新型炭材料, 2018, 33(4): 341-350.
引用本文: 韩景泉, 陆凯悦, 岳一莹, 梅长彤, 王慧祥, 严鹏彬, 徐信武. 纤维素纳米纤丝-碳纳米管/天然橡胶柔性导电弹性体的合成与性能. 新型炭材料, 2018, 33(4): 341-350.
HAN Jing-quan, LU Kai-yue, YUE Yi-ying, MEI Chang-tong, WANG Hui-xiang, YAN Peng-bin, XU Xin-wu. Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes. New Carbon Mater., 2018, 33(4): 341-350.
Citation: HAN Jing-quan, LU Kai-yue, YUE Yi-ying, MEI Chang-tong, WANG Hui-xiang, YAN Peng-bin, XU Xin-wu. Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes. New Carbon Mater., 2018, 33(4): 341-350.

纤维素纳米纤丝-碳纳米管/天然橡胶柔性导电弹性体的合成与性能

基金项目: 国家自然科学基金(31770609);中国博士后基金第九批特别资助(2016T90466);江苏省高校自然科学研究面上项目(17KJB220007);江苏省"333"工程资助(2016);江苏省青蓝工程资助(2016);浙江省重点研发计划资助(2017C01117);江苏省优势学科资助(PAPD);南京林业大学分析测试中心.
详细信息
    作者简介:

    韩景泉,副教授.E-mail:hjq@njfu.edu.cn;陆凯悦,硕士研究生.E-mail:843632614@qq.com

    通讯作者:

    徐信武,教授.E-mail:xucarpenter@aliyun.com

  • 中图分类号: TQ342.31

Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes

Funds: National Natural Science Foundation of China (31770609);Ninth China Special Postdoctoral Science Foundation (2016T90466);Natural Science Research Project of Jiangsu Province (17KJB220007);333 Project of Jiangsu Province (2016);Qing Lan Project of Jiangsu Province (2016);Key Research and Development Program of Zhe-jiang Province (2017C01117);Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD);Analysis and Test Center of Nanjing Forestry University.
  • 摘要: 利用纤维素纳米纤丝(Cellulose nanofibers,CNFs)搭载碳纳米管(Carbon nanotubes,CNTs)均匀分散在天然橡胶(Natural rubber,NR)基体中,制备了具有高强度和高柔韧性的复合导电弹性体(CNF-CNT/NR)。通过对其化学结构、微观结构、力学性能和电学性能等研究发现,CNFs能有效协助CNTs在NR基体中均匀分散,使得弹性体的力学性能和电学性能显著提高。当CNFs和CNTs含量分别为3和10 phr时,CNF-CNT/NR的强度和弹性模量可达6.44±0.32 MPa和8.77±0.48 MPa,约为纯NR的6.9和9.96倍,CNT/NR的1.49和1.59倍;其电导率可达1.78±0.86 S/m,在电流密度为0.3 A/g时比电容可达107 F/g;1.0 A/g的电流密度下循环充放电1 200次,其比电容仍为初始值的83%。该柔性导电弹性体具有优良的机械性能和电学性能,有望应用于柔性电子器件领域。
  • Russo A, Ahn B Y, Adams J J, et al. Pen-on-paper flexible electronics[J]. Advanced materials, 2011, 23(30):3426-3430.
    Vikulov S, Di Stasio F, Ceseracciu L, et al. Fully solution-processed conductive films based on colloidal copper selenide nanosheets for flexible electronics[J]. Advanced Functional Materials, 2016, 26(21):3670-3677.
    Tian M, Ma Q, Li X, et al. High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR[J]. Journal of Materials Chemistry A, 2014, 2(29):11144-11154.
    Jia L C, Li Y K, Yan D X. Flexible and efficient electromagnetic interference shielding materials from ground tire rubber[J]. Carbon, 2017, 121:267-273.
    Ramuz M, Tee B C K, Tok J B H, et al. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics[J]. Advanced Materials, 2012, 24(24):3223-3227.
    Dong B, Wu S, Zhang L, et al. High performance natural rubber composites with well-organized interconnected graphene networks for strain-sensing application[J]. Industrial & Engineering Chemistry Research, 2016, 55(17):4919-4929.
    Additives N. Reinforcement of natural rubber with bacterial cellulose via a latex aqueous microdispersion process[J]. Journal of Nanomaterials, 2017(4):1-9.
    焦琛, 张卫珂, 苏方远, 等. 超级电容器电极材料与电解液的研究进展[J]. 新型炭材料, 2017, 32(2):106-115. (JIAO Chen, ZHANG Wei-ke, SU Fang-yuan, et al. Research progress on electrode materials and electrolytes for supercapacitors[J]. New Carbon Materials, 2017, 32(2):106-115.)
    Jose T, Moni G, Salini S, et al. Multifunctional multi-walled carbon nanotube reinforced natural rubber nanocomposites[J]. Industrial Crops and Products, 2017, 105:63-73.
    Sagar S, Iqbal N, Maqsood A, et al. MWCNTS incorporated natural rubber composites:thermal insulation, phase transition and mechanical properties[J]. International Journal of Engineering and Technology, 2014, 6(3):168.
    Sikong L, Kooptarnond K, Khangkhamano M, et al. Superior properties of natural rubber enhanced by multiwall-carbon nanotubes/nanoclay hybrid[J]. Digest Journal of Nanomaterials and Biostructures, 2015, 10(3):1067-U110.
    Selvan N T, Eshwaran S, Das A, et al. Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications[J]. Sensors and Actuators A:Physical, 2016, 239:102-113.
    Nakaramontri Y, Kummerlöwe C, Nakason C, et al. The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites[J]. Polymer Composites, 2015, 36(11):2113-2122.
    Subramaniam K, Das A, Stöckelhuber K W, et al. Elastomer composites based on carbon nanotubes and ionic liquid[J]. Rubber Chemistry & Technology, 2013, 86(3):367-400.
    Ma P C, Tang B Z, Kim J K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites[J]. Carbon, 2008, 46(11):1497-1505.
    Dong B, Zhang L, Wu Y. Highly conductive natural rubber-graphene hybrid films prepared by solution casting and in situ reduction for solvent-sensing application[J]. Journal of materials science, 2016, 51(23):10561-10573.
    Khalil H A, Bhat A, Yusra A I. Green composites from sustainable cellulose nanofibrils:A review[J]. Carbohydrate Polymers, 2012, 87(2):963-979.
    Leung A C, Hrapovic S, Lam E, et al. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure[J]. Small, 2011, 7(3):302-305.
    Corrêa A C, De Morais Teixeira E, Pessan L A, et al. Cellulose nanofibers from curaua fibers[J]. Cellulose, 2010, 17(6):1183-1192.
    Bendahou A, Kaddami H, Dufresne A. Investigation on the effect of cellulosic nanoparticles' morphology on the properties of natural rubber based nanocomposites[J]. European Polymer Journal, 2010, 46(4):609-620.
    Han J, Zhou C, Wu Y, et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying:effect of suspension concentration, particle size, crystal structure, and surface charge[J]. Biomacromolecules, 2013, 14(5):1529-1540.
    Heydari H, Gholivand M B. An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor[J]. New Journal of Chemistry, 2017, 41(1):237-244.
    Hamedi M M, Hajian A, Fall A B, et al. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes[J]. Acs Nano, 2014, 8(3):2467-76.
    诸颖, 李文新. 碳纳米管的细胞毒性[J]. 中国科学, 2008, (8):677-684.
    隋刚, 梁吉, 朱跃峰, 等. 碳纳米管/天然橡胶复合材料的红外光谱和DSC分析[J]. 高技术通讯, 2004, 14(8):41-46. (Sui Gang, Liang Ji, Zhu Yue-feng, et al. The infrared spectrum and DSC analyses on natural rubber cmposites filled with carbon nanotubes[J]. Chinese High Technology Letters, 2004, 14(8):41-46.)
    于海涛. 碳纳米管的结构特性及界面强化对天然橡胶复合材料性能的影响研究[D]. 北京化工大学, 2013. (YU Hai-tao. The property influence to natural rubber composites of the structural characteristic of carbon nanotubes and interfacial enhancements[D]. Beijing University of Chemical Technology, 2013.)
    Le H H, Abhijeet S, Ilisch S, et al. The role of linked phospholipids in the rubber-filler interaction in carbon nanotube (CNT) filled natural rubber (NR) composites[J]. Polymer, 2014, 55(18):4738-4747.
    Lauret J-S, Voisin C, Cassabois G, et al. Ultrafast carrier dynamics in single-wall carbon nanotubes[J]. Physical review letters, 2003, 90(5):057404.
    Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. Journal of colloid and interface science, 2003, 260(1):89-94.
    Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites[J]. Carbohydrate polymers, 2016, 137:174-183.
    Cao J, Zhang X, Wu X, et al. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications[J]. Carbohydrate Polymers, 2016, 140:88-95.
    Zhou Y, Fan M, Chen L, et al. Lignocellulosic fibre mediated rubber composites:An overview[J]. Composites Part B, 2015, 76:180-191.
    Bras J, Hassan M L, Bruzesse C, et al. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites[J]. Industrial Crops & Products, 2010, 32(3):627-633.
    Yang C, Chen C, Pan Y, et al. Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline[J]. Electrochimica Acta, 2015, 182:264-271.
    Cheng Q, Tang J, Shinya N, et al. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density[J]. Journal of Power Sources, 2013, 241:423-428.
    Zhang Y, Liu C, Wen B, et al. Preparation and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes[J]. Materials letters, 2011, 65(1):49-52.
  • 加载中
图(1)
计量
  • 文章访问数:  1192
  • HTML全文浏览量:  529
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 录用日期:  2018-08-30
  • 修回日期:  2018-07-18
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回