留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳基功能材料在海洋领域中的应用进展

张辰 唐全骏 陶莹 吴红兵 凌国维 杨全红

张辰, 唐全骏, 陶莹, 吴红兵, 凌国维, 杨全红. 碳基功能材料在海洋领域中的应用进展. 新型炭材料, 2018, 33(5): 385-391.
引用本文: 张辰, 唐全骏, 陶莹, 吴红兵, 凌国维, 杨全红. 碳基功能材料在海洋领域中的应用进展. 新型炭材料, 2018, 33(5): 385-391.
ZHANG Chen, TANG Quan-jun, TAO Ying, WU Hong-bing, LING Guo-wei, YANG Quan-hong. Functional carbon materials in marine science and technology. New Carbon Mater., 2018, 33(5): 385-391.
Citation: ZHANG Chen, TANG Quan-jun, TAO Ying, WU Hong-bing, LING Guo-wei, YANG Quan-hong. Functional carbon materials in marine science and technology. New Carbon Mater., 2018, 33(5): 385-391.

碳基功能材料在海洋领域中的应用进展

基金项目: 国家自然科学基金(51602220,U1710109).
详细信息
    作者简介:

    张辰,博士.E-mail:zhangc@tju.edu.cn

    通讯作者:

    凌国维,副研究员.E-mail:lgw@tju.edu.cn

  • 中图分类号: TQ127.1+1

Functional carbon materials in marine science and technology

Funds: National Natural Science Foundation of China (51602220, U1710109).
  • 摘要: "海洋战略"是中国重要的国家发展战略,海洋资源开发与环境保护、海上运输、海港和海防建设、海洋工程装备、海洋探测设备都需要大量的新型功能材料。碳基材料,已在诸多科学和工程领域显示出良好的应用前景。本文系统评述了碳基功能材料在海洋科学领域的应用进展,重点对环境应急材料、防腐涂料、结构材料、海水淡化等领域的应用进行了评述,并对碳基功能材料在海洋储能等新兴方向的应用进行了展望。
  • 尹衍生, 黄翔, 董丽华. 海洋工程材料学[M]. 北京:科学出版社, 2008. (Yin Y S, Huang X, Dong L H. Marine Engineering Materials[M]. Beijing:Science Press, 2008.)
    Inagaki M, Kang F Y. Carbon Materials and Engineering-from Fundamentals to Applications[M].Tsinghua University Press, 2006.
    Hossain M K, Chowdhury M M R, Imran K A, et al. Effect of low velocity impact responses on durability of conventional and nanophased CFRP composites exposed to seawater[J]. Polymer Degradation and Stability, 2014, 99:180-189.
    Valenza A, Fiore V, Di Bella G. Effect of UD carbon on the specific mechanical properties of glass mat composites for marine applications[J]. Journal of Composite Materials, 2010, 44(11):1351.
    于礼玮, 曹维宇. 碳纤维复合材料在海洋中的应用[J]. 化工新型材料, 2016, 44(8):4-6. (Yu L W, Cao W Y. Application of carbon fiber composite in marine area[J]. New Chemical Materials, 2016, 44(8):4-6.)
    唐红艳, 王继辉, 徐鹏遥. 复合材料在海军舰艇上的国外应用现状及进展[J]. 船舶, 2006, 19(2):6-11. (Tang H Y, Wang J H, Xu P Y. Worldwide application and development of compound material in naval ships[J]. SHIP & BOAT, 2006, 19(2):6-11.)
    Sun X S, Chen Y, Tan V B C, et al. Homogenization and stress analysis of multilayered composite offshore production risers[J]. Journal of Applied Mechanics, 2014, 81(3):1-11.
    易明. 碳纤维复合材料在深海油气开发中的应用[J]. 新材料产业, 2013, 11:31-36. (Yi M. Application of carbon fiber composite materials in deep-sea oil and gas development[J]. Advanced Materials Industry, 2013, 11:31-36.)
    罗永康, 李炜. 碳纤维复合材料在风力发电机叶片中的应用[J]. 电网与清洁能源, 2008, 24(5):53-57. (Luo Y K, Li Y. Application of carbon fiber reinforced composites in wind turbine blade[J]. Power System and Clean Energy, 2008, 24(5):53-57.)
    Annunciado T R, Sydenstricker T H D, Amico S C. Experimental investigation of various vegetable fibers as sorbent materials for oil spills[J]. Marine Pollution Bulletin, 2005, 50:1340-1346.
    Radeti'c M M, Joci'c D M, Iovanti'c P M, et al. Recycled wool-based nonwoven material as an oil sorbent[J]. Environmental Science and Technology, 2003, 37:1008-1012.
    Xu M Y, Wang G, Zeng Z X, et al. Diverse wettability of superoleophilicity and superoleophobicity for oil spill cleanup and recycling[J]. Applied Surface Science, 2017, 426:1158-1166.
    Singh E, Chen Z P, Housmand F, et al. Superhydrophobic Graphene Foams[J]. Small, 2013, 9(1):75-80.
    Bi H C, Xie X, Yin K B, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J]. Advanced Functional Materials, 2012, 22(21):4421-4425.
    Niu Z Q, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials, 2012, 24(30):4144-4150.
    Dong X C, Chen J, Ma Y W, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communications, 2012, 48:10660-10662.
    Zhao Y, Hu C G, Hu Y, et al. A versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte Chemie-International Edition, 2012, 51(45):11371-11375.
    Sun H Y, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18):2554-2560.
    Hu H, Zhao Z B, Gogotsi Y, et al. Compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption[J]. Environmental Science & Technology Letters, 2014, 1(3):214-220.
    Ge J, Shi L A, Wang Y C, et al. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill[J]. Nature Nanotechnology, 2017, 12:434-440.
    李增新, 王彤, 孟韵. 膨胀石墨在环境污染治理中的应用[J]. 环境工程学报, 2007, 2(1):69-72. (Li Z X, Wang T, Meng Y, et al. Application of expanded graphite in treatment of environmental pollution[J]. Chinese Journal of Environmental Engineering, 2007, 2(1):69-72.)
    王宏喜, 王宏霞, 薛丽. 关于膨胀石墨吸油性能的研究[J]. 炭素技术, 2004, 5(23):21-23. (Wang H X, Wang H X, Xue L. Study of adsorption of industrial by expanded graphite[J]. Carbon Techniques, 2004, 5(23):21-23.)
    申青峰, 赵景联, 鲁晓雯. 膨胀石墨吸附剂的制备及其吸油性能研究[J]. 工业水处理, 2010, 30(8):57-60. (Shen Q F, Zhao J L, Lu X W, et al. Preparation of expanded graphite adsorbent and its oils adsorption capacity[J]. Industrial Water Treatment, 2010, 30(8):57-60.)
    Elimelech M, Phillip W A. The Future of seawater desalination:Energy, technology, and the environment[J]. Science, 2011, 333(6043):712-717.
    Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5):16018.
    Subramani A, Jacangelo J G. Emerging desalination technologies for water treatment:A critical review[J]. Water Research, 2015, 75:164-187.
    Corry B. Designing carbon nanotube membranes for efficient water desalination[J]. Journal of Physical Chemistry B, 2008, 112(5):1427-1434.
    Das R, Ali ME, Abd Hamid SB, et al. Carbon nanotube membranes for water purification:A bright future in water desalination[J]. 2013, 336:97-109.
    Yang Q, Su Y, Chi C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16:1198-1202.
    Su Y, Kravets V G, Wong S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide[J]. Nature Communications, 2014, 5:4843.
    Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12:546-550.
    Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Science, 2017, 550:380.
    刘国杰. 石墨烯重防腐涂料产业化研发的初步进展[J]. 中国涂料, 2016, 31:6-15. (Liu G J. Progress of the industrialization of graphene heavy-duty coatings[J]. China Coatings, 2016, 31:6-15.)
    Cui C L, Lim A T, Huang J X. A Cautionary note on graphene anti-corrosion coatings[J]. Nature Nanotechnology, 2017, 12:834-835.
    Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries:recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5):2525-2540.
    Chai J C, Liu Z H, Ma J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2):1600377.
    Tao Y, Xie X Y, Lv W, et al. Towards ultrahigh volumetric capacitance:graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3:2975.
    Zhang C, Lv W, Tao Y, et al. Towards superior volumetric performance:design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 2015, 8:1390-1403.
    Xu Y, Tao Y, Zheng X Y, et al. Metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm-3[J]. Advanced Materials, 2015, 27:8082-8087.
    Li H, Tao Y, Zheng X Y, et al. Ultra-thick graphene bulk electrodes of supercapacitors for compact energy storage[J]. Energy & Environmental Science, 2016, 9:3135-3142.
    Xu Y, Tao Y, Li H, et al. Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles[J]. Nano Energy, 2017, 36:349-355.
    Han J W, Kong D B, Lv W, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage[J]. Nature Communications, 2018, 9:402.
  • 加载中
图(1)
计量
  • 文章访问数:  548
  • HTML全文浏览量:  160
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-01
  • 录用日期:  2018-11-01
  • 修回日期:  2018-09-29
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回