留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻壳基活性炭负载镍催化剂的制备及在香草醛加氢脱氧反应中的催化性能

陈志浩 晁威 丰祎 金璐 朱燕超 杨晓敏 王子忱

陈志浩, 晁威, 丰祎, 金璐, 朱燕超, 杨晓敏, 王子忱. 稻壳基活性炭负载镍催化剂的制备及在香草醛加氢脱氧反应中的催化性能. 新型炭材料, 2018, 33(5): 417-423.
引用本文: 陈志浩, 晁威, 丰祎, 金璐, 朱燕超, 杨晓敏, 王子忱. 稻壳基活性炭负载镍催化剂的制备及在香草醛加氢脱氧反应中的催化性能. 新型炭材料, 2018, 33(5): 417-423.
CHEN Zhi-hao, CHAO Wei, FENG Yi, JIN Lu, ZHU Yan-chao, YANG Xiao-min, WANG Zi-chen. Preparation of Ni-rice husk carbon catalysts for the hydrodeoxygenation of vanillin. New Carbon Mater., 2018, 33(5): 417-423.
Citation: CHEN Zhi-hao, CHAO Wei, FENG Yi, JIN Lu, ZHU Yan-chao, YANG Xiao-min, WANG Zi-chen. Preparation of Ni-rice husk carbon catalysts for the hydrodeoxygenation of vanillin. New Carbon Mater., 2018, 33(5): 417-423.

稻壳基活性炭负载镍催化剂的制备及在香草醛加氢脱氧反应中的催化性能

基金项目: 国家自然科学基金(51502108);高等学校博士学科点专项科研基金(20130061120018);吉林省发改委自主创新能力专项(2014N145);吉林省科技发展计划项目(20150520016JH).
详细信息
    通讯作者:

    杨晓敏,博士,副教授.E-mail:xmyang@jlu.edu.cn

  • 中图分类号: O643.3

Preparation of Ni-rice husk carbon catalysts for the hydrodeoxygenation of vanillin

Funds: National Natural Science Foundation of China (51502108); Research Fund for the Doctoral Program of Higher Education of China (20130061120018); Foundation of Jilin Provence Development and Reform Commission, China (2014N145); Development Project of Science and Technology of Jilin Province (20150520016JH).
  • 摘要: 以稻壳活性炭作为碳源,硝酸镍为金属前驱体,采用浸渍法结合碳热还原和催化石墨化的方法制备了具有良好香草醛加氢脱氧催化性能的稻壳基活性炭负载镍催化剂。在催化剂的制备过程中,稻壳活性炭作为金属前驱体的还原剂,金属镍作为稻壳活性炭催化石墨化的催化剂。以生物油模型化合物香草醛加氢脱氧制备4-甲基愈创木酚为探针反应,考察制得催化剂的加氢脱氧反应性能。采用X射线衍射、高分辨透射电镜、拉曼光谱仪、氮气吸附仪等手段对催化剂中Ni的价态、粒径和分散情况,石墨化程度、比表面积、孔径等进行表征。结果表明,催化剂的结构和其催化性能存在密切联系。随着碳热还原温度的升高,催化剂的催化活性出现了先降低而后提高的趋势。这是由于较高的碳热还原温度引起镍纳米粒子的聚集和长大,不利于其催化性能;同时较高的碳热还原温度促使催化剂石墨化程度的提高,对其催化性能起到促进作用。
  • Zhang Q, Chang J, Wang T J, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion and Management, 2007, 48(1):87-92.
    Zhu X L, Lobban L L, Mallinson R G, et al. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst[J]. Journal of Catalysis, 2011, 281(1):21-29.
    Yang X M, Liang Y, Zhao X, et al. Au/CNTs catalyst for highly selective hydrodeoxygenation of vanillin at water/oil interface[J]. RSC Advances, 2014, 4(60):31932-31936.
    Zhao C, Song W J, Lercher J A. Aqueous phase hydroalkylation and hydrodeoxygenation of phenol by dual functional catalysts comprised of Pd/C and H/La-BEA[J]. ACS Catalysis, 2012, 2(12):2714-2723.
    Xu X, Li Y, Gong Y T, Zhang P F, et al. Synthesis of palladium nanoparticles supported on mesoporous n-doped carbon and their catalytic ability for biofuel upgrade[J]. Journal of the American Chemical Society, 2012, 134(41):16987-16990.
    Li G Y, Li N, Li S S, et al. Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan[J]. Chemical Communications, 2013, 49(51):5727-5729.
    Lv Z F, Sun Q, Meng X J, et al. Superhydrophilic mesoporous sulfonated melamine-formaldehyde resin supported palladium nanoparticles as an efficient catalyst for biofuel upgrade[J]. Journal of Materials Chemistry A, 2013, 1(30):8630-8635.
    Wang L, Zhang M M, Zhang M, et al. Hydrodeoxygenation of dibenzofuran over mesoporous silica COK-12 supported palladium catalysts[J]. Energy & Fuels, 2013, 27(4):2209-2217.
    Zhang F M, Zheng S, Xiao Q, et al, El-Shall M S. Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water[J]. Green Chemistry, 2016, 18(9):2900-2908.
    Huang F, Li W Z, Lu Q A, et al. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl2(PPh3)3[J]. Chemical Engineering Technology, 2010, 33(12):2082-2088.
    Wildschut J, Melián-Cabrera I, Heeres H J. Catalyst studies on the hydrotreatment of fast pyrolysis oil[J]. Applied Catalysis B:Environmental, 2010, 99(1-2):298-306.
    Chen L G, Zhu Y L, Zheng H Y, et al. Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru-Mo/ZrO2 catalysts[J]. Applied Catalysis A:General, 2012, 411:95-104.
    Shi J J, Zhao M S, Wang Y Y, et al. Upgrading of aromatic compounds in bio-oil over ultrathin graphene encapsulated Ru nanoparticles[J]. Journal of Materials Chemistry A, 2016, 4(16):5842-5848.
    Li G Y, Li N, Wang Z Q, et al. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose[J]. ChemSusChem, 2012, 5(10):1958-1966.
    Kim Y T, Dumesic J A, Huber G W. Aqueous-phase hydrodeoxygenation of sorbitol:A comparative study of Pt/Zr phosphate and Pt-ReOx/C[J]. Journal of Catalysis, 2013, 304:72-85.
    Olcay H, Subrahmanyam A V, Xing R, et al. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams[J]. Energy & Environmental Science, 2013, 6(1):205-216.
    Huynh T M, Armbruster U, Pohl M M, et al. Hydrodeoxygenation of phenol as a model compound for bio-oil on non-noble bimetallic nickel-based catalysts[J]. Chem Cat Chem, 2014, 6(7):1940-1951.
    Nie L, de Souza P M, Noronha F B, et al. Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2014, 388:47-55.
    Dickinson J G, Savage P E. Development of NiCu catalysts for aqueous-phase hydrodeoxygenation[J]. ACS Catalysis, 2014, 4(8):2605-2615.
    Kukushkin R G, Bulavchenko O A, Kaichev V V, et al. Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters[J]. Applied Catalysis B:Environmental, 2015, 163:531-538.
    Zhou M H, Tian L F, Niu L, et al. Upgrading of liquid fuel from fast pyrolysis of biomass over modified Ni/CNT catalysts[J]. Fuel Processing Technology, 2014, 126:12-18.
    鲍英, 詹亮, 王春晓, 等. 用作气相催化反应体系CNF/泡沫炭催化剂载体的合成[J]. 新型炭材料, 2011, 26(5):341-346. (Bao Y, Zhan L, Wang C X, et al. Synthesis of carbon nanofiber/carbon-foam composite for catalyst support in gas-phase catalytic reactions[J]. New Carbon Materials, 2011, 26(5):341-346.)
    Liu Y Z, Li Y F, Yuan S X, et al. Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions[J]. ChemElectroChem, DOI: 10.1002/celc.201800937.
    Li Y F, Liu Y Z, Liang Y, et al. Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors[J]. Applied Physics A Materials Science & Processing, 2017, 123(9):566.
    吴明铂, 李玲燕, 刘军, 等. 稻壳基介孔炭的制备及其在超级电容器中的应用[J]. 新型炭材料, 2015, 30(5):471-475. (Wu M B, Li L Y, Liu J, et al. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J]. New Carbon Materials, 2015, 30(5):471-475.)
    谭明慧, 郑经堂, 李朋, 等. 超级电容器用高性能石油焦基多孔炭的制备及改性[J]. 新型炭材料, 2016, 31(3):343-351. (Tan M H, Zheng J T, Li P, et al. Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes[J]. New Carbon Materials, 2016, 31(3):343-351.)
    Liu Y R, Lin B P, Li D, et al. Hierarchically porous graphitic carbon monoliths containing nickel nanoparticles as magnetically separable adsorbents for dyes[J]. Journal of Applied Polymer Science, 2015, 132(3):41322.
    李瑛, 钟健, 杨霞珍, 等. 简易合成不同孔径尺寸的半石墨化有序介孔炭[J]. 新型炭材料, 2011, 26(2):123-129. (Li Y, Zhong J, Yang X Z, et al. Simple synthesis of semi-graphitized ordered mesoporous carbon with tunable pore sizes[J]. New Carbon Materials, 2011, 26(2):123-129.)
    Fuertes A B, Alvarez S. Graphitic mesoporous carbons synthesised through mesostructured silica templates[J]. Carbon, 2004, 42(15):3049-3055.
  • 加载中
图(1)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  84
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-30
  • 录用日期:  2018-11-01
  • 修回日期:  2018-10-02
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回