留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载辛伐他汀的氧化石墨烯/丝素蛋白屏障膜的制备及其生物学性能

赵彬 武峰 白莹莹 方敏 王璐

赵彬, 武峰, 白莹莹, 方敏, 王璐. 负载辛伐他汀的氧化石墨烯/丝素蛋白屏障膜的制备及其生物学性能. 新型炭材料, 2018, 33(5): 460-468.
引用本文: 赵彬, 武峰, 白莹莹, 方敏, 王璐. 负载辛伐他汀的氧化石墨烯/丝素蛋白屏障膜的制备及其生物学性能. 新型炭材料, 2018, 33(5): 460-468.
ZHAO Bin, WU Feng, BAI Ying-ying, FANG Min, WANG Lu. Preparation and biological properties of a graphene oxide/silk fibroin barrier membrane loaded with simvastatin. New Carbon Mater., 2018, 33(5): 460-468.
Citation: ZHAO Bin, WU Feng, BAI Ying-ying, FANG Min, WANG Lu. Preparation and biological properties of a graphene oxide/silk fibroin barrier membrane loaded with simvastatin. New Carbon Mater., 2018, 33(5): 460-468.

负载辛伐他汀的氧化石墨烯/丝素蛋白屏障膜的制备及其生物学性能

基金项目: 山西省应用基础研究项目(201701D221065);山西医科大学校博士启动基金(BS03201638).
详细信息
    作者简介:

    赵彬,副教授.E-mail:18636666068@163.com

    通讯作者:

    王璐,讲师.E-mail:wdl02011@126.com

  • 中图分类号: TB33

Preparation and biological properties of a graphene oxide/silk fibroin barrier membrane loaded with simvastatin

Funds: Shanxi Applied Basic Research Program Science (201701D221065); Startup Foundation for Doctors of Shanxi Medical University (BS03201638).
  • 摘要: 通过冷冻干燥技术制备负载辛伐他汀(Simvastatin,SIM)的氧化石墨烯/丝素蛋白(Graphene oxide/silk fibroin,GO/SF)复合屏障膜,并研究其体外细胞相容性及其在引导性骨组织再生中的可应用性。采用扫描电镜、X-射线衍射、紫外分光光度计检测GO/SF屏障膜的形貌、凝聚态结构以及释药性能;激光共聚焦显微镜、CCK-8实验评价小鼠胚胎成骨细胞前体细胞(MC3T3-E1)在屏障膜上的粘附与增殖情况;将GO/SF/SIM膜组、GO/SF膜组、SF/SIM膜组以及SF膜组分别覆盖于SD大鼠颅骨缺损处,术后12周取材分析各组新骨形成情况及GO对大鼠重要脏器的影响。结果显示,GO/SF屏障膜具有表面致密、内部疏松的双层结构,凝聚态结构表现为稳定的Silk Ⅱ结构;体外释放实验表明该屏障膜具有缓释效果,药物可在15天内被缓慢释放;同时GO/SF屏障膜可很好的支持MC3T3-E1细胞的粘附、生长与增殖,负载SIM后的材料表现出更好的细胞相容性;体内实验结果表明GO/SF/SIM膜组具有最优的骨缺损修复效果,局部应用GO短期观察对大鼠重要脏器(肝、脾、肾)无损害。
  • Liu J, Kems DG. Mechanisms of guided bone regeneration:A review[J]. Open Dentistry Journal, 2014, 8(1):56-65.
    Chu C, Deng J, Sun X, et al. Collagen membrane and immune response in guided bone regeneration:recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017, 23(5):421-435.
    Turkkan S, Atila D, Akdag A, et al. Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering[J]. Journal of Biomedical Materials Research part B, 2018, DOI: 10.1002/jbm.b.34079.
    Zhu C, Huang J, Xue C, et al. Skin derived precursor schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap[J]. Neuroscience Research, 2017, doi.org/10.1016/j.neures.2017.12.007.
    Luo J, Zhang H, Zhu J, et al. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering[J]. Colloids and surfaces B:Biointerfaces, 2017, 163:369.
    Song JY, Kim SG, Lee JW, et al. Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 112(6):26-33.
    Kim JY, Yang BE, Ahn JH, et al. Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects[J]. J Adv Prosthodont, 2014, 6(6):539-46.
    Ha Y-Y, Park Y-W, Kweon H, et al. Comparison of the physical properties and in vivo bioactivities of silkworm-cocoon-derived silk membrane, collagen membrane, and polytetrafluoroethylene membrane for guided bone regeneration[J]. Macromolecular Research, 2014, 22(9):1018-1023.
    Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Wang C, Zhang Z, Chen B, et al. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system[J]. Journal of Colloid and Interface Science, 2018, 516:332-341.
    Li D, Liu T, Yu X, et al. Fabrication of graphene-biomacromolecule hybrid materials for tissue engineering application[J]. Polymer Chemistry, 2017, 8(30):4309-4321.
    Jang S, Kang S, Lee J, et al. Nano-graphene oxide composite for in vivo imaging[J]. International Journal of Nanomedicine,2018, 13:221-234.
    Li Y F, Liu Y Z, Zhang W K, et al. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J]. Mater Lett, 2015, 157:273-276.
    Liu Y Z, Li Y F, Yuan S X, et al. Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions[J]. ChemElectroChem, DOI: 10.1002/celc.201800937.
    Yu Z, Xiao C, Huang Y, et al. Enhanced bioactivity and osteoinductivity of carboxymethyl chitosan/nanohydroxyapatite/graphene oxide nanocomposites[J]. RSC Advances, 2018, 8(32):17860-17877.
    Depan D, Pesacreta TC, Misra RDK. The synergistic effect of a hybrid graphene oxide-chitosan system and biomimetic mineralization on osteoblast functions[J]. Biomater Sci, 2014, 2(2):264-274.
    Liu H, Xi P, Xie G, et al. Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization[J]. The Journal of Physical Chemistry C, 2012, 116(5):3334-3341.
    Liu H, Cheng J, Chen F, et al. Gelatin functionalized graphene oxide for mineralization of hydroxyapatite:biomimetic and in vitro evaluation[J]. Nanoscale, 2014, 6(10):5315-22.
    Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins[J]. Science, 1999, 286(5446):1946-1949.
    Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation[J]. Endocrinology, 2003, 144(144):681-692.
    Liu C, Wu Z, Sun H C. The Effect of simvastatin on mRNA expression of transforming growth factor-β1,bone morphogenetic protein-2 and vascular endothelial growth factor in tooth extraction socket[J]. International Journal of Oral Science, 2009, 1(2):90-98.
    Wang L, Lu C, Li Y, et al. Green fabrication of porous silk fibroin/graphene oxide hybrid scaffolds for bone tissue engineering[J]. RSC Advances, 2015, 5:78660-78668.
    Zhang W, Wang X, Wang S, et al. The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor[J]. Biomaterials, 2011, 32:9415-9424.
    Qiao Y, Zhang W, Tian P, et al. Stimulation of bone growth following zinc incorporation into biomaterials[J]. Biomaterials, 2014, 35:6882-6897.
    Li M, Lu S, Wu Z, et al. Study on porous silk fibroin materials. I. Fine structure of freeze dried silk fibroin[J]. Journal of Applied Polymer Science, 2001, 79(12):2185-2191.
    Li M, Wu Z, Zhang C, et al. Study on porous silk fibroin materials. Ⅱ. Preparation and characteristics of spongy silk fibroin materials[J]. Journal of Applied Polymer Science, 2001, 79(12):2192-2199.
    Huang L, Li C, Yuan W, et al. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels[J]. Nanoscale, 2013, 5(9):3780-3786.
  • 加载中
图(1)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  92
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-01
  • 录用日期:  2018-11-01
  • 修回日期:  2018-09-30
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回