留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

狭缝法化学气相沉积石墨烯:合成,形貌与结构

樊姝婧 谭瑞轩 谢翔旻 张明瑜 黄启忠

樊姝婧, 谭瑞轩, 谢翔旻, 张明瑜, 黄启忠. 狭缝法化学气相沉积石墨烯:合成,形貌与结构. 新型炭材料, 2018, 33(6): 522-528.
引用本文: 樊姝婧, 谭瑞轩, 谢翔旻, 张明瑜, 黄启忠. 狭缝法化学气相沉积石墨烯:合成,形貌与结构. 新型炭材料, 2018, 33(6): 522-528.
FAN Shu-jing, TAN Rui-xuan, XIE Xiang-min, ZHANG Ming-yu, HUANG Qi-zhong. Synthesis, morphology and structure of CVD graphene produced by a slit method. New Carbon Mater., 2018, 33(6): 522-528.
Citation: FAN Shu-jing, TAN Rui-xuan, XIE Xiang-min, ZHANG Ming-yu, HUANG Qi-zhong. Synthesis, morphology and structure of CVD graphene produced by a slit method. New Carbon Mater., 2018, 33(6): 522-528.

狭缝法化学气相沉积石墨烯:合成,形貌与结构

基金项目: 湖南省自然科学基金(2018JJ2513);湖南省战略性新兴产业科技攻关项目(2016GK4020).
详细信息
    作者简介:

    樊姝婧,硕士研究生.E-mail:493379590@qq.com

    通讯作者:

    张明瑜,副教授.E-mail:zhangmingyu@csu.edu.cn

  • 中图分类号: TQ127.1+1

Synthesis, morphology and structure of CVD graphene produced by a slit method

Funds: Natural Science Foundation of Hunan Province (2018JJ2513); Strataegic Emerging Industry Project in Hunan(2016GK4020).
  • 摘要: 控制石墨烯成核密度和石墨烯层数一直是生长单晶石墨烯的重要问题。本文采用一种改进的化学气相沉积法,在中压状态下(5.5 Torr),以自制石墨模具(狭缝)为生长石墨烯的反应容器,制备出了成核密度低的单层石墨烯。利用扫描电镜和拉曼光谱仪对石墨烯的形貌和结构进行了表征,并研究了在1 253 K时以甲烷为碳源,不同沉积时间对石墨烯形貌的影响。结果表明,在VCH4VH2=1∶15、沉积时间为20 min条件下获得单层石墨烯。随着沉积时间的延长,获得的石墨烯尺寸变大,但层数增多。
  • Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
    Jiang Y X, Zou L, Cheng J F, et al. Needle-like NiCo2O4 coated on graphene foam as a flexible cathode for lithium-oxygen batteries[J]. Chemelectrochem, 2017, 4(12):3140-3147.
    Chang Y H, Zhou L, Xiao Z C, et al. Embedding reduced graphene oxide in bacterial cellulose-derived carbon nanofibril networks for supercapacitors[J]. Chemelectrochem, 2017, 4(10):2448-2454.
    Lee C, Wei X, Kysar J W. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
    Xu D, Ivan S, Anthony B. Approaching ballistic in suspended graphene[J]. Nature Nanotechnology, 2008, 3(8):491-495.
    Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8):569-581.
    Liu Y Z, Li Y F, Su F Y, et al. Easy one-step synthesis of N-doped graphene for supercapacitors[J]. Energy Storage Mater, 2016, 2:69-75.
    Brownson D A C, Kampouris D K, Banks C E. An overview of graphene in energy production and storage applications[J]. J Power Sources, 2011, 196(11):4873-4885.
    Li Y F, Liu Y Z, Zhang W K, et al. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J]. Mater Lett, 2015, 157:273-276.
    Li X, Wang X, Zhang L. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867):1229-1232.
    Si Y, Samulski E T. Synthesis of water soluble graphene[J]. Nano Lett, 2008, 8(6):1679-1682.
    Berger C, Song Z M, Li T B, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics[J]. Phys Chem B, 2004, 108(52):19912-19916.
    Berger C, Song Z M, Li X B, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777):1191-1196.
    Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286.
    Yu Q, Lian J, Siriponglert S, et al. Graphene segregated on Ni surfaces and transferred to insulators[J]. Appl Phys Lett, 2008, 93(11):113103.
    Bae S, Kim H, Lee Y. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol, 2010, 5(8):574-578.
    Juang Z Y, Wu C Y, Lu A Y. Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process[J]. Carbon, 2010, 48(11):3169-3174.
    Xue Y, Wu B, Guo Y. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition[J]. Nano Research, 2011, 4(12):1208-1214.
    Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett, 2009, 9(1):30-35.
    Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230):706-710.
    Li X, Magnuson C W, Venugopal A, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper[J]. Am Chem Soc, 2011, 133(9):2816-2819.
    Zhang Y, Zhang L Y, Pyojae K, et al. Vapor trapping growth of single-crystalline graphene flowers:Synthesis, morphology, and electronic properties[J]. Nano Lett, 2012, 12(6):2810-2816.
    Mueller N S, Morfa A J, Abou-Ras D. Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition[J]. Carbon, 2014, 78(18):347-355.
    Wofford J M, Nie S, McCarty K F, et al. Graphene islands on Cu foils:The interplay between shape, orientation, and defects[J]. Nano Lett, 2010, 10(12):4890-4896.
    黄东. SiC系涂层炭/炭复合材料的制备及热防护性能研究[D]. 长沙:中南大学, 2015.
    Oberlin A. Pyrocarbons[J]. Carbon, 2002, 40(1):7-24.
    Yu Q K, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J]. Nat Mater, 2011, 10(6):443-449.
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical review letters, 2006, 97(18):13831-13840.
    Malard L M, Pimenta M A, Dresselhaus G. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5):51-87.
    De Arco L G, Zhang Y, Kumar A, et al. Synthesis, transfer, and devices of single and few-layer graphene by chemical vapor deposition[J]. IEEE Trans Nanotechnol, 2009, 8(2):135-138.
    Chen S S, Cai W W, Piner R, et al. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy films[J]. Nano Lett, 2011, 11(11):3519-3525.
    Joshua D Wood, Scott W Schmucker, Austin S Lyons, et al. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition[J]. Nano lett, 2011, 11(11):4547-4554.
    Zhang Y, Li Z, Kim P, et al. Anisotropic hydrogen etching of chemical vapor deposited graphene[J]. ACS Nano, 2011, 6(1):126-132.
    Kim H, Saiz E, Chhowalla M, et al. Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene[J]. New J Phys, 2013, 15(5):1-5.
    Kim H, Mattevi C, Calvo M R, et al. Activation energy paths for graphene nucleation and growth on Cu[J]. ACS Nano, 2012, 6(4):3614-3623.
    Jürgen K, Magdalene B, Sebastian G. Suppressing graphene nucleation during CVD on polycrystalline Cu by controlling the carbon content of the support foils[J]. Carbon, 2016, 96:153-156.
    Roberto M. Cristina G A. Review of CVD synthesis of graphene[J]. Chem Vap Deposition, 2013, 19(10-11-12):297-322.
    Robinson V N E, Robins J L. Nucleation kinetics of gold deposited onto UHV cleaved surfaces of NaCl and KBr[J]. Thin Solid Films, 1974, 20(1):155-175.
    Loginova E, Bartelt N C, Feibelman P J, et al. Factors influencing graphene growth on metal surfaces[J]. New J Phys, 2009, 11(6):063-046.
    Chen C M, Zhang Q, Yang M G, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10):3572-3584.
  • 加载中
图(1)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  161
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-02
  • 录用日期:  2018-12-27
  • 修回日期:  2018-12-10
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回