留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物质烟灰的碳量子点的制备及性能

张庆红 孙晓峰 阮红 李洪光

张庆红, 孙晓峰, 阮红, 李洪光. 基于生物质烟灰的碳量子点的制备及性能. 新型炭材料, 2018, 33(6): 571-577.
引用本文: 张庆红, 孙晓峰, 阮红, 李洪光. 基于生物质烟灰的碳量子点的制备及性能. 新型炭材料, 2018, 33(6): 571-577.
ZHANG Qing-hong, SUN Xiao-feng, RUAN Hong, LI Hong-guang. Synthesis and properties of carbon quantum dots from flue ash of biomass. New Carbon Mater., 2018, 33(6): 571-577.
Citation: ZHANG Qing-hong, SUN Xiao-feng, RUAN Hong, LI Hong-guang. Synthesis and properties of carbon quantum dots from flue ash of biomass. New Carbon Mater., 2018, 33(6): 571-577.

基于生物质烟灰的碳量子点的制备及性能

基金项目: 中科院百人计划资助项目(Y20245YBR1);国家自然科学基金资助项目(21402215,61474124).
详细信息
    作者简介:

    张庆红,硕士研究生.E-mail:18235140088@163.com

    通讯作者:

    李洪光,研究员.E-mail:hgli@sdu.edu.cn

  • 中图分类号: O647.2

Synthesis and properties of carbon quantum dots from flue ash of biomass

Funds: Chinese Academy of Sciences Program Funded Project (Y20245YBR1); National Natural Science Foundation of China (21402215, 61474124).
  • 摘要: 分别以河北沧州和山东日照的民居烟道灰为原料,通过酸回流法成功制备了具有良好水溶性和稳定性的碳量子点。高分辨透射电子显微镜观察表明碳量子点为球形颗粒,内核尺寸小于1 nm;傅里叶变换红外光谱仪和X-射线光电子能谱仪研究表明碳量子点表面含有羧基、羟基等有机官能团;拉曼光谱和X-射线衍射测量表明碳量子点结晶性差,内部含有大量缺陷;荧光光谱测量结果表明碳量子点发射黄色荧光,波长大于500 nm且具有较高的荧光量子产率,最高可达3.83%。结果表明,民居烟道灰有望成为碳量子点制备的新型廉价原料,所获得的黄光发射碳量子点在生物成像等领域具有广阔的应用前景。
  • Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40):12736-12737.
    Kayo Oliveira Vieira, Jefferson Bettini, Luiz Fernando Cappa de Oliveira, et al. Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths[J]. New Carbon Materials, 2017, 32(4):327-337.
    Li H, Kang Z, Liu Y, et al.Carbon nanodots:Synthesis, properties and applications[J]. J Mater Chem, 2012, 22(46):24230-24253.
    Terasaki M. Fluorescent labeling of endoplasmic reticulum[J]. Methods Cell Biol, 1988, 29, 125-135.
    Aiswal J K, Goldman E R, Mattoussi H, et al. Use of quantum dots for live cell imaging[J]. Nature methods, 2004, 1(1):73-78.
    谢文菁, 傅英懿, 马红, 等. 荧光石墨烯量子点制备及其在细胞成像中的应用[J]. 化学学报, 2012, 70(20):2169-2172. (Xie W J, Fu Y Y, Ma H, et al. Preparation of fluorescent graphene quantum dots and their application in cell imaging[J]. Acta Chimica Sinica, 2012, 70(20):2169-2172.)
    Zhu S, Meng Q, Wang L, et al.Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angew Chem Int Ed, 2013, 52(14):3953-3957.
    Li H, He X, Kang Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed, 2010, 49(26):4430-4434.
    Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. J Mater Chem, 2009, 112(19):484-488.
    Qu Q, Zhu A, Shao X, et al. Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging[J]. Chem Commun, 2012, 48(44):5473-5475.
    Dong Y, Zhou N, Lin X, et al. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon[J]. Chem Mater, 2010, 22(21):5895-5899.
    Sahu S, Beher B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents[J]. Chem Commun, 2012, 48(70):8835-8837.
    Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chem Mater, 2009, 21(23):5563-5565.
    Zhang J, Yuan Y, Liang G L, et al. Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis[J]. Adv Science, 2015, 2(4):1-6.
    Qin X, Lu W, Asiri A M, et al. Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles-reduced graphene oxide nanocomposites for glucose detection[J]. Catal Sci Technol, 2013, 3(4):1027-1035.
    Qu S, Zhou D, Li D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering[J]. Adv Mater, 2016, 28(18):3516-3521.
    Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot[J]. Angew Chem Int Ed, 2007, 46(34):6473-6475.
    TIAN L, GHOSH D, CHEN W, et al. Nanosized carbon particles from natural gas soot[J]. Chem mater, 2009, 21(13):2803-2809.
    Qiao Z, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J]. Chem Commun, 2010, 46(46):8812-8814.
    Ye R, Xiang C, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nat commun, 2013, 4(2943):1-6.
    Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(Ⅱ) detection[J]. Small, 2014, 10(23):4926-4933.
    Dong Y, Lin J, Chen Y, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals[J]. Nanoscale, 2014, 6(13):7410-7415.
    Jiang B, Zhou B, Shen X, et al. Selective probing of gaseous ammonia using red-emitting carbon dots based on an interfacial response mechanism[J]. Chem-Eur J, 2015, 21(52):18993-18999.
    Peggy Z Z N, Stephanie P P C, Jessica F Y F, et al. Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions[J]. New Carbon Materials, 2016, 31(2):135-143.
    王月, 吴文婷, 吴明铂, 等. 可视化黄色荧光石油焦基碳量子点高效检测Cu2+[J]. 新型炭材料, 2015, 30(6):550-559. (Wang Y, Wu W T, Wu M B, et al. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. New Carbon Materials, 2015, 30(6):550-559.)
    Wu M, Wang Y, Wu W, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon, 2014, 78(14):480-489.
    Shao X, Wu W, Wang R, et al. Engineering surface structure of petroleum-coke-derived carbon dots to enhance electron transfer for photooxidation[J]. Journal of Catalysis, 2016, 344:236-241.
    Henry R J. Evaluation of plant biomass resources available for replacement of fossil oil[J]. Plant Biotechnology Journal, 2010, 8(3):288-293.
    Sun Y, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J Am Chem Soc, 2006, 128(24):7756-7757.
    Tao H, Yang K, Ma Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2):281-290.
    Liu J, Rinzler A G, Dai H, et al. Fullerene pipes[J]. Science, 1998, 280(5367):1253-1256.
    Bao L, Liu C, Zhang Z L, et al. Photoluminescence-tunable carbon nanodots:surface-state energy-gap tuning[J]. Adv Mater, 2015, 27(10):1663-1667.
    Wang L, Zhu S J, Wang H Y, et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots[J]. ACS Nano, 2014, 8(3):2541-2547.
    Hu S L, Trinchi A, Atkin P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J]. Angew Chem Int Ed, 2015, 54(10):2970-2974.
  • 加载中
图(1)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  173
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-08
  • 录用日期:  2018-12-27
  • 修回日期:  2018-11-06
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回