留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交联稳定化对聚酰亚胺基石墨纤维结构和性能的影响

肖萌 徐红玉 马兆昆 宋怀河

肖萌, 徐红玉, 马兆昆, 宋怀河. 交联稳定化对聚酰亚胺基石墨纤维结构和性能的影响. 新型炭材料, 2019, 34(1): 19-28.
引用本文: 肖萌, 徐红玉, 马兆昆, 宋怀河. 交联稳定化对聚酰亚胺基石墨纤维结构和性能的影响. 新型炭材料, 2019, 34(1): 19-28.
XIAO Meng, XU Hong-yu, MA Zhao-kun, SONG Huai-he. Effect of crosslinking method on the microstructures and properties of polyimide-based graphite fibers. New Carbon Mater., 2019, 34(1): 19-28.
Citation: XIAO Meng, XU Hong-yu, MA Zhao-kun, SONG Huai-he. Effect of crosslinking method on the microstructures and properties of polyimide-based graphite fibers. New Carbon Mater., 2019, 34(1): 19-28.

交联稳定化对聚酰亚胺基石墨纤维结构和性能的影响

基金项目: 国家自然科学基金(51872018).
详细信息
    作者简介:

    肖萌,硕士研究生.E-mail:xiao-meng94@qq.com

    通讯作者:

    马兆昆,博士,副教授.E-mail:mazk@mail.buct.edu.cn

  • 中图分类号: TB321

Effect of crosslinking method on the microstructures and properties of polyimide-based graphite fibers

Funds: National Natural Science Foundation of China(51872018).
  • 摘要: 有机纤维中分子链之间的交联稳定化是炭纤维制备过程中的重要工艺。本文首先制备了一种带羧基侧链的聚酰亚胺(PI)纤维,然后经羧基间氢键的物理交联及与1,4-丁二醇发生化学交联制备了两种不同交联方式的共聚PI纤维,最后经炭化、石墨化制备了PI基石墨纤维。借助于TG-DSC,XRD等测试方法对两种交联方式处理的共聚PI纤维进行表征,发现物理交联能显著提高共聚PI纤维的炭化收率,石墨化收率及热稳定性,并且物理交联PI基石墨纤维石墨化程度和热导率优于化学交联。随着3,5-二氨基苯甲酸(DABA)含量增加,物理交联PI基石墨纤维的石墨化程度和热导率逐渐增加,DABA含量为5%的纤维石墨化程度最优,含量10%的热导率最高为245.6 W·m-1·K-1
  • Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers[J]. Polymer Reviews, 2012, 52(3):234-258.
    Gupta A, Dhakate S R, Pal P, et al. Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers[J]. Diamond and Related Materials, 2017, 78:31-38.
    Wang X, Liu J, Li Z. The graphite phase derived from polyimide at low temperature[J]. Journal of Non-Crystalline Solids, 2009, 355(1):72-75.
    Inagaki M, Kaburagi Y, Hishiyama Y. Thermal management material:Graphite[J]. Advanced Engineering Materials, 2014, 16(5):494-506.
    Leong K C, Jin L W. Study of highly conductive graphite foams in thermal management applications[J]. Advanced Engineering Materials, 2008, 10(4):338-345.
    Yuan G, Li X, Dong Z, et al. The structure and properties of ribbon-shaped carbon fibers with high orientation[J]. Carbon, 2014, 68:426-439.
    Gallego N C, Edie D D, Nysten B. The thermal conductivity of ribbon-shaped carbon fibers[J]. Carbon, 2000, 38(7):1003-1010.
    高晓晴, 郭全贵, 刘朗. 高导热炭材料的研究进展[J]. 功能材料, 2006, 37(2):173-177. (Gao X, Guo Q, Liu L, et al. The study progress on carbon materials with high thermal conductivity[J]. Functional Material, 2006, 37(2):173-177)
    孔清, 樊桢, 余立琼, 等. 高导热C/C复合材料的发展现状[J]. 宇航材料工艺, 2014, 44(1):16-23. (Kong Q, Fan Z, Yu L, et al. Progress of high-thermal conductivity carbon/carbon composites[J]. Aerospace Materials and Technology, 2014, 44(1):16-23.)
    芦时林, Brian Rand. 高导热大直径中间相沥青炭纤维的研制及结构表征[J]. 新型炭材料, 2000, 15(1):1-5. (Lu S, Brian R. Large diameter carbon filaments from mesophase pitch for thermal management application[J]. New Carbon Materials, 2000, 15(1):1-5.)
    马兆昆, 史景利, 刘朗, 等. 中间相沥青纤维制备高导热炭材料的研究[J]. 无机材料学报, 2006, 21(5):1167-1172. (Ma Z, Shi J, Liu L, et al. High thermal conductivity carbon materials made from mesophase pitch fibers[J]. Journal of Inorganic Materials, 2006, 21(5):1167-1172.)
    李同起, 胡子君. 定向高导热碳材料及其热管理结构设计[J]. 宇航材料工艺, 2007, 37(1):16-18. (Li T, Hu Z. Carbon materials with high directional thermal conductivity and their structure design of thermal management system[J]. Aerospace Materials and Technology, 2007, 37(1):16-18.)
    Jing M, Wang C, Wang Q, et al. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600℃[J]. Polymer Degradation and Stability, 2007, 92(9):1737-1742.
    Yuan G, Li X, Dong Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon, 2014, 68:413-425.
    刘均庆, 史景利, 高晓晴, 等. 中间相沥青碳纤维径向辐射结构形成机理研究[J]. 化工新型材料, 2011, 39(2):84-87. (Liu J, Shi J, Gao X, et al. The study on formation mechanism of radial structure of mesophase pitch-based carbon fibers[J]. New Chemical Materials, 2011, 39(2):84-87.)
    Inagaki M, Ohta N, Hishiyama Y. Aromatic polyimides as carbon precursors[J]. Carbon, 2013, 61(11):1-21.
    Gajanan S B, Renata S. Conversion of co-polyimide fiber into carbon fiber[J]. American Carbon Society, 1997, 406-407.
    Cao L, Zhang M, Niu H, et al. Structural relationship between random copolyimides and their carbon fibers[J]. Journal of Materials Science, 2016, 52(4):1883-1897.
    Zhang M Y, Niu H Q, Qi S L, et al. Structure evolutions involved in the carbonization of polyimide fibers with different chemical constitution[J]. Materials Today Communications, 2014, 1(1-2):1-8.
    张梦颖, 牛鸿庆, 武德珍. 前驱体结构对聚酰亚胺基碳纤维结构和性能的影响[EB/OL]. http://www.paper.edu.cn/releasepaper/content/201704-483.[2017-04-25]. (Zhang M, Niu H, Wu D. Effect of precusor structure on the structures and properties of polyimide-based carbon fibers[EB/OL]. http://www.paper.edu.cn/releasepaper/content/201704-483.[2017-04-25].)
    Chang J, Niu H, He M. Structure-property relationship of polyimide fibers containing ether groups[J]. Journal of Applied Polymer Science, 2015, 132(34).
    Huang S B, Jiang Z Y, Ma X Y. Properties, morphology and structure of BPDA/PPD/ODA polyimide fibres[J]. Plastics Rubber & Composites, 2013, 42(10):407-415.
    Li W, Wu Z, Jiang H. High-performance aromatic polyimide fibres[J]. Journal of Materials Science, 1996, 31(16):4423-4431.
    Xiao M, Li N, Ma Z, et al. The effect of doping graphene oxide on the structure and property of polyimide-based graphite fibre[J]. RSC Advances, 2017, 7(89):56602-56610.
    徐强, 徐樑华, 安娜, 等. PAN基碳纤维预氧丝的取向结构及力学性能表征[J]. 合成纤维工业, 2006, 29(5):4-6. (Xu Q, Xu L, An N, et al. Characterization of orientation structure and mechanical properties of PAN-based carbon preoxidized yarn[J]. China Synthetic Fiber Industry, 2006, 29(5):4-6.)
    贺福, 杨永岗. 超级导热型沥青基碳纤维[J]. 高科技纤维与应用, 2003, 28(5):27-31. (He F, Yang Y. Super thermal conductive mesophase pitch-based carbon fibers[J]. Hi-tech Fiber and Application, 2003, 28(5):27-31.)
    Favvas E P, Katsaros F K, Papageorgiou S K, et al. A review of the latest development of polyimide based membranes for CO2 separations[J]. Reactive and Functional Polymers, 2017, 120:104-130.
    Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation-a review[J]. Carbon, 2004, 42(2):241-259.
    Vanherck K, Koeckelberghs G, Vankelecom I J. Crosslinking polyimides for membrane applications:A review[J]. Progress in Polymer Science, 2013, 38(6):874-896.
    Xiao Y, Chung T, Guan H, et al. Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation[J]. Journal of Membrane Science, 2007, 302(1/2):254-264.
    Staudt-Bickel C, Koros W J. Improvement of CO2/CH4, separation characteristics of polyimides by chemical crosslinking[J]. Journal of Membrane Science, 1999, 155(1):145-154.
    Wind J D, Staudtbickel C, Paul D R. The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes[J]. Indengchemres, 2002, 41(24):6139-6148.
    John D W, Claudia S, Donald R P. solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction[J]. Macromolecules, 2015, 36(6):1882-1888.
    Sun M, Chang J, Tian G, et al. Preparation of high-performance polyimide fibers containing benzimidazole and benzoxazole units[J]. Journal of Materials Science, 2016, 51(6):2830-2840.
    Yin C, Dong J, Zhang Z. Structure and properties of polyimide fibers containing benzimidazole and Amide Units[J]. Journal of Polymer Science Part B Polymer Physics, 2015, 53(3):183-191.
    Hess S, Staudt C. Variation of esterfication conditions to optimize solid-state crosslinking reaction of DABA-containing copolyimide membranes for gas separations[J]. Desalination, 2007, 217(1-3):8-16.
    Li A, Ma Z, Song H, et al. The effect of liquid stabilization on the structures and the conductive properties of polyimide-based graphite fibers[J]. RSC Adv, 2015, 5(97):79565-79571.
  • 加载中
图(1)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  137
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-10
  • 录用日期:  2019-02-20
  • 修回日期:  2019-01-30
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回