留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙脱石/炭对炭纤维/环氧树脂复合材料性能的影响

吴雪平 赵军帅 饶续 张先龙 吴玉程 吕春祥 杨禹 邵泽凡

吴雪平, 赵军帅, 饶续, 张先龙, 吴玉程, 吕春祥, 杨禹, 邵泽凡. 蒙脱石/炭对炭纤维/环氧树脂复合材料性能的影响. 新型炭材料, 2019, 34(1): 51-59.
引用本文: 吴雪平, 赵军帅, 饶续, 张先龙, 吴玉程, 吕春祥, 杨禹, 邵泽凡. 蒙脱石/炭对炭纤维/环氧树脂复合材料性能的影响. 新型炭材料, 2019, 34(1): 51-59.
WU Xue-ping, ZHAO Jun-shuai, RAO Xu, ZHANG Xian-long, WU Yu-cheng, LU Chun-xiang, YANG Yu, SHAO Ze-fan. Improved mechanical and thermal properties of carbon fiber/epoxy composites with a matrix modified by montmorillonite/carbon fillers. New Carbon Mater., 2019, 34(1): 51-59.
Citation: WU Xue-ping, ZHAO Jun-shuai, RAO Xu, ZHANG Xian-long, WU Yu-cheng, LU Chun-xiang, YANG Yu, SHAO Ze-fan. Improved mechanical and thermal properties of carbon fiber/epoxy composites with a matrix modified by montmorillonite/carbon fillers. New Carbon Mater., 2019, 34(1): 51-59.

蒙脱石/炭对炭纤维/环氧树脂复合材料性能的影响

基金项目: 国家自然科学基金(51872070,51002042).
详细信息
    作者简介:

    赵军帅,硕士研究生.E-mail:2463306918@qq.com

    通讯作者:

    吴雪平,副教授.E-mail:xuepingw@ustc.edu.cn

  • 中图分类号: TB33

Improved mechanical and thermal properties of carbon fiber/epoxy composites with a matrix modified by montmorillonite/carbon fillers

Funds: National Natural Science Foundation of China (51872070, 51002042).
  • 摘要: 以蒙脱石(MMT)为模板,壳聚糖为碳源,采用水热法合成蒙脱石/炭(MMT/C)纳米复合材料。控制蒙脱石/炭中蒙脱石和炭的比例,并添加于环氧树脂中,模压工艺制备多尺度炭纤维/环氧树脂(CF/EP)复合材料。采用三点弯曲测试、断面扫描等研究两种添加剂对复合材料力学性能、动态热机械性能和导热性能的影响。结果表明:壳聚糖在蒙脱石表面水热炭化成炭,含有C=O、O—H和C—N等有机官能团。当壳聚糖与蒙脱石的质量比为0.5时,水热所得的蒙脱石/炭添加量为2 wt%时对炭纤维/环氧树脂的增强效果最佳,复合材料的弯曲强度和弯曲模量分别提高13.4%和20.4%,导热系数提高78.7%。蒙脱石/炭中蒙脱石和炭的协同作用促使蒙脱石/炭在环氧树脂中实现良好的分散;炭中含氮等极性基团与环氧树脂通过化学键合增强蒙脱石/炭与树脂的界面结合,促进应力的传递和分散以及热量的有效传递。
  • K W Kim, D K Kim, B S Kim, et al. Cure behaviors and mechanical properties of carbon fiber-reinforced nylon6/epoxy blended matrix composites[J]. Composites Part B:Engineering, 2017, 112:15-21.
    Y Zhang, F Xu, C Zhang, et al. Tensile and interfacial properties of polyacrylonitrile-based carbon fiber after different cryogenic treated condition[J]. Composites Part B:Engineering, 2016, 99:358-365.
    A Yudhanto, G Lubineau, I A Ventura, et al. Damage characteristics in 3D stitched composites with various stitch parameters under in-plane tension[J]. Composites Part A:Applied Science and Manufacturing, 2015, 71:17-31.
    S Y Jin, R J Young, S J Eichhorn. Hybrid carbon fibre-carbon nanotube composite interfaces[J]. Composites Science and Technology, 2014, 95:114-120.
    L Tng. A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix[J]. Polymer Compersite, February, 1997, 18:100-113.
    M Sharma, S Gao, E Mäder, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology, 2014,102:35-50.
    I Giraud, S Franceschi, E Perez, et al. Influence of new thermoplastic sizing agents on the mechanical behavior of poly(ether ketone ketone)/carbon fiber composites[J]. Journal of Applied Polymer Science, 2015, 132.
    H Yuan, C Wang, S Zhang, et al. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite[J]. Applied Surface Science, 2012, 259:288-293.
    M Ishifune, R Suzuki, Y Mima, et al. Novel electrochemical surface modification method of carbon fiber and its utilization to the preparation of functional electrode[J]. Electrochimica Acta, 2005, 51:14-22.
    J I Paredes, A Martinez-Alonso, J M D Tascon. Oxygen plasma modification of submicron vapor grown carbon fibers as studied by scanning tunneling microscopy[J]. Carbon, 2002, 40:1101-1108.
    Y J Kwon, Y Kim, H Jeon, et al. Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites[J]. Composites Part B:Engineering, 2017, 122:23-30.
    P I Gonzalez Chi, O Rodríguez Uicab, C Martin Barrera, et al. Influence of aramid fiber treatment and carbon nanotubes on the interfacial strength of polypropylene hierarchical composites[J]. Composites Part B:Engineering, 2017, 122:16-22.
    J Zhang, S Deng, Y Wang, et al. Effect of nanoparticles on interfacial properties of carbon fibre-epoxy composites[J]. Composites Part A:Applied Science and Manufacturing, 2013, 55:35-44.
    S He, C Lu, S Zhang. Facile and efficient route to polyimide-TiO2 nanocomposite coating onto carbon fiber[J]. ACS Appl Mater Interfaces, 2011, 3:4744-4750.
    S O Lee, S H Choi, S H Kwon, et al. Modification of surface functionality of multi-walled carbon nanotubes on fracture toughness of basalt fiber-reinforced composites[J]. Composites Part B:Engineering, 2015, 79:47-52.
    Y J Noh, S Y Kim. Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets[J]. Polymer Testing, 2015, 45:132-138.
    Y Zhou, F Pervin, V K Rangari, et al. Influence of montmorillonite clay on the thermal and mechanical properties of conventional carbon fiber reinforced composites[J]. Journal of Materials Processing Technology, 2007, 191:347-351.
    Y Yang, C X Lu, X L Su, et al. Effect of nano-SiO2 modified emulsion sizing on the interfacial adhesion of carbon fibers reinforced composites[J]. Materials Letters, 2007, 61:3601-3604.
    A K Pathak, M Borah, A Gupta, et al. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science & Technology, 2016, 135:28-38.
    K C Etika, L Liu, L A Hess, et al. The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites[J]. Carbon, 2009, 47:3128-3136.
    W Yuan, Q Xiao, L Li, et al. Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles[J]. Applied Thermal Engineering, 2016,106:1067-1074.
    L Yue, G Pircheraghi, S A Monemian, et al. Epoxy composites with carbon nanotubes and graphene nanoplatelets-Dispersion and synergy effects[J]. Carbon, 2014, 78:268-278.
    X Wu, W Zhu, X Zhang, et al. Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol[J]. Applied Clay Science, 2011, 52:400-406.
    X Wu, C Liu, H Qi, et al. Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite-derived carbon nanotubes[J]. Applied Clay Science, 2016, 119:284-293.
    X Zhang, L Cheng, X Wu, et al. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue[J]. J. Environ. Sci., 2015, 33:97-105.
    X Wu, P Gao, X Zhang, et al. Synthesis of clay/carbon adsorbent through hydrothermal carbonization of cellulose on palygorskite[J]. Applied Clay Science, 2014, 95:60-66.
    X Wu, Y Xu, X. Zhang, et al. Adsorption of low-concentration methylene blue onto a palygorskite/carbon composite[J]. New Carbon Materials, 2015, 30:71-78.
    D Bana-, A Kubala Kuku-, J. Braziewicz, et al. Study of properties of chemically modified samples of halloysite mineral with X-ray fluorescence and X-ray powder diffraction methods[J]. Radiation Physics and Chemistry, 2013, 93:129-134.
    Y Yang, J Cui, M Zheng, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chem Commun (Camb), 2012, 48:380-382.
    Z Orolínová, A Mockov-iaková. Structural study of bentonite/iron oxide composites[J]. Materials Chemistry and Physics, 2009, 114:956-961.
    Q Zhou, Q Gao, W Luo, C Yan, et al. One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 470:248-257.
    C Laginhas, J M V Nabais, M M Titirici. Activated carbons with high nitrogen content by a combination of hydrothermal carbonization with activation[J]. Microporous and Mesoporous Materials, 2016, 226:125-132.
    Bana D, Kubala Kuku A, Braziewicz J, et al. Study of properties of chemically modified samples of halloysite mineral with X-ray fluorescence and X-ray powder diffraction methods[J]. Radiation Physics and Chemistry, 2013, 93(2):129-134.
    蒋长龙. 有机/蒙脱土复合能材料研究[D]. 合肥工业大学, 2003. (Jiang Changlong. Research on organic/montmorillonite composite energy materials[D]; Hefei University of Technology, 2003.)
    M Li, H Zang, J Feng, et al. Efficient conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis in ionic liquids aqueous solution[J]. Polymer Degradation and Stability, 2015, 121:331-339.
    X Liu, J Pang, F Xu, et al. Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan[J]. Sci Rep, 2016, 6:31100.
    J F Timmerman, B S Hayes, J C Seferis. Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites[J]. Composites Science & Technology, 2002, 62:1249-1258.
    J Cha, S Jin, J H Shim, et al. Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites[J]. Materials & Design, 2016, 95:1-8.
    Ji Shoufeng, Li Guichun. Research progress of agglomeration mechanism of ultrafine powder[J]. China Mining, 2006, 8:54-57.
    纪守峰, 李桂春. 超细粉体团聚机理研究进展[J]. 中国矿业, 2006, 8:54-57. (Shi Jianming. Dispersion and polymer coating of nano calcium carbonate[D]. Zhejiang University, 2005.)
    Wang A, Gao X, Giese R F, et al. A ceramice carbon hybrid as a high-temperature structural monolith and reinforcing filler and binder for carbon/carbon composites[J]. Carbon, 2013, 59:76-92.
    卫保娟. 碳纳米管与石墨烯增强环氧树脂复合材料的制备及其性能的研究[D]. 汕头大学, 2008. (Wei Baojuan. Preparation and properties of carbon nanotubes and graphene reinforced epoxy resin composites[D]. Shantou University, 2008.)
  • 加载中
图(1)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  81
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 录用日期:  2019-02-20
  • 修回日期:  2019-01-25
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回