留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单丝拉伸断裂法探究上浆剂改性炭纤维与聚碳酸酯的界面黏结性

姚婷婷 吴刚平 刘玉婷 宋红艳

姚婷婷, 吴刚平, 刘玉婷, 宋红艳. 单丝拉伸断裂法探究上浆剂改性炭纤维与聚碳酸酯的界面黏结性. 新型炭材料, 2019, 34(1): 60-67.
引用本文: 姚婷婷, 吴刚平, 刘玉婷, 宋红艳. 单丝拉伸断裂法探究上浆剂改性炭纤维与聚碳酸酯的界面黏结性. 新型炭材料, 2019, 34(1): 60-67.
YAO Ting-ting, WU Gang-ping, LIU Yu-ting, SONG Hong-yan. Research on the interfacial adhesion properties of carbon fibers modified by sizing agents to polycarbonate using a single-filament fragmentation test. New Carbon Mater., 2019, 34(1): 60-67.
Citation: YAO Ting-ting, WU Gang-ping, LIU Yu-ting, SONG Hong-yan. Research on the interfacial adhesion properties of carbon fibers modified by sizing agents to polycarbonate using a single-filament fragmentation test. New Carbon Mater., 2019, 34(1): 60-67.

单丝拉伸断裂法探究上浆剂改性炭纤维与聚碳酸酯的界面黏结性

基金项目: 国家自然科学基金委-中石油联合基金项目(U1362107);国家自然科学基金委-山西煤基低炭联合基金项目(U1810116).
详细信息
    作者简介:

    姚婷婷,硕士研究生.E-mail:yaotingting@sxicc.ac.cn

    通讯作者:

    吴刚平,博士,研究员.E-mail:wgp@sxicc.ac.cn

  • 中图分类号: TQ342+.74

Research on the interfacial adhesion properties of carbon fibers modified by sizing agents to polycarbonate using a single-filament fragmentation test

Funds: National Natural Science Foundation of China(U1362107); National Natural Science Foundation of China & Shanxi Coal-based Low-carbon Corporation (U1810116).
  • 摘要: 为了探究不同上浆剂对炭纤维/聚碳酸酯复合材料界面黏结性的影响,采用自制水性聚碳酸酯乳液、聚醋酸乙烯酯乳液、聚氨酯乳液与聚乙烯乳液等上浆剂对炭纤维进行表面改性。采用红外光谱(IR)和热重-质谱联用(TG-MS)仪分析上浆剂的化学结构;采用扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)与热重分析仪(TG)等研究上浆改性炭纤维的表面结构。为了量化地分析炭纤维与聚碳酸酯的界面剪切强度,采用单丝拉伸断裂法得到界面剪切强度。结果表明,水性聚氨酯乳液上浆改性后的炭纤维与聚碳酸酯的界面剪切强度最高(29.19 MPa),这是由于聚氨酯中含有较多的氨酯键,可与树脂形成较多的氢键。相对而言,水性自制乳液与聚醋酸乙烯酯乳液涂层后的炭纤维与聚碳酸酯之间只有物理吸附作用,因此界面黏结性略弱。
  • Li D F, Wang H J, He F, et al. Structure and properties of T300 and T700 carbon fibers[J]. Carbon, 2007, 45(6):1379.
    Wu G P, Li D H, Yang Y, et al. Carbon layer structures and thermal conductivity of graphitized carbon fibers[J]. Journal of Material Science, 2011, 47(6):2882-2890.
    Zielke U J. Surface-oxidized carbon fibers:Surface structure and chemistry[J]. Carbon, 1996, 34(8):983-998.
    Manabu I, Ryuhei S, Yasuo M, et al. Novel electrochemical surface modification method of carbon fiber and its utilization to the preparation of functional electrode[J]. Electrochimica Acta, 2005, 51(1):14-22.
    曹霞, 温月芳, 张寿春, 等. 耐温型炭纤维乳液上浆剂[J]. 新型炭材料, 2006, 21(4):338-341. (CAO Xia, WEN Yue-fang, ZHANG Shou-chun, et al. A heat-resistant emulsifying sizing agent for carbon fibers[J]. New Carbon Materials, 2006, 21(4):337-342.)
    Jiang D W, Xing L X, Liu L, et al. Interfacially reinforced unsaturated polyester composites by chemically grafting different functional POSS onto carbon fibers[J]. Journal of Materials Chemistry A, 2014, 2(43):18293-18303.
    Allongue M D P, Desbat B, Fagebaume O. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts[J]. Journal of the American Chemical Society, 1997, 119:201-207.
    Zheng W H, Hu J T, Han Z S,et al. Synthesis of porous carbon fibers with strong anion exchange functional groups[J]. Chemical Communication, 2015, 51(48):9853-9856.
    Dai Z S, Zhang B Y, Shi F H, et al. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257:8457-8461.
    Curtis P T, Bailey J E. The stiffness and strength of a polyamide thermoplastic reinforced with glass and carbon fibres[J]. Journal of Material Science, 1978, 13:377-390.
    Li J, Cai C L. The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites[J]. Current Applied Physics, 2011, 11(1):50-54.
    Bismarck A, Song B, Springer J, et al. Study on surface and mechanical fiber characteristics and their effect on the adhesion properties to a polycarbonate matrix tuned by anodic carbon fiber oxidation[J]. Composites Part A, 1999, 30:1351-1366.
    Chand S. Carbon fibers for composites[J]. Journal of Material Science, 2000, 35:1303-1313.
    Pisanova E V, Zhandarov S F. Interfacial adhesion and failure modes in single filament thermoplastic composites[J]. Polymers & Polymer Composites, 1994, 15:147-155.
    Zhang X Q, Fan X Y, Yan C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces, 2012, 4:1543-1552.
    Copponnex T J. Analysis and evaluation of the single-fiber fragmentation test[J]. Composites Science Technology, 1996, 56:893-909.
    Khan R A, Parsons A J, Jones I A, et al. Interfacial properties of phosphate glass fiber/poly(caprolactone) system measured using the single fiber fragmentation test[J]. Composites Interfaces, 2011, 18:77-90.
    Awal A, Cescutti G, Ghosh S B, et al. Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT)[J]. Composites Part A, 2011, 42(1):50-56.
    武玉芬, 张博明. 炭纤维拉伸强度的离散性分析[J].玻璃钢/复合材料, 2010, 3:29-31. (The discrete analysison the tensile strength of carbon fiber[J]. Fiber reinforced plastics/composites, 2010, 3:29-31.)
    Paiva M C, Bernardo C A, Nardin M. Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres[J]. Carbon, 2000, 38:1323-1337.
    Tripathi D, Jones F R. Single fibre fragmentation test for assessing[J]. Journal of Materials Science, 1998, 33:1-16.
  • 加载中
图(1)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  106
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 录用日期:  2019-02-20
  • 修回日期:  2019-01-22
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回