留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳基材料在电催化析氢反应中的应用

张泽霞 吕瑞涛 黄正宏 康飞宇

张泽霞, 吕瑞涛, 黄正宏, 康飞宇. 碳基材料在电催化析氢反应中的应用. 新型炭材料, 2019, 34(2): 115-131.
引用本文: 张泽霞, 吕瑞涛, 黄正宏, 康飞宇. 碳基材料在电催化析氢反应中的应用. 新型炭材料, 2019, 34(2): 115-131.
ZHANG Ze-xia, LU Rui-tao, HUANG Zheng-hong, KANG Fei-yu. Carbon materials for use in the electrocatalytic hydrogen evolution reaction. New Carbon Mater., 2019, 34(2): 115-131.
Citation: ZHANG Ze-xia, LU Rui-tao, HUANG Zheng-hong, KANG Fei-yu. Carbon materials for use in the electrocatalytic hydrogen evolution reaction. New Carbon Mater., 2019, 34(2): 115-131.

碳基材料在电催化析氢反应中的应用

基金项目: 国家自然科学基金(51722207,11364043);国家重点基础研究发展计划项目(2015CB932500).
详细信息
    作者简介:

    张泽霞,博士研究生,讲师.E-mail:zx-zhang11@mails.tsinghua.edu.cn

    通讯作者:

    吕瑞涛,博士,助理教授.E-mail:lvruitao@tsinghua.edu.cn;康飞宇,教授.E-mail:fykang@tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

Carbon materials for use in the electrocatalytic hydrogen evolution reaction

Funds: National Natural Science Foundation of China (51722207,11364043); National Key Basic Research and Development Project (2015CB932500).
  • 摘要: 氢作为一种高燃烧热值的清洁能源载体,对于解决当前日益严峻的能源短缺和环境污染问题具有重要意义。与传统的化石燃料(如天然气、煤)重整制氢相比,电催化分解水作为一种清洁可再生的制氢工艺具有重要的应用前景。但目前常用的电解水析氢反应(HER)催化剂多为贵金属基(如Pt)材料,储量稀少且成本高昂,因此开发低成本、高活性的非贵金属HER催化剂是当前该领域研究面临的重要挑战。本文综述了近年来碳基材料用于HER催化研究的相关进展。根据碳基材料在HER催化剂中扮演的功能将其分为两大类:活性相和复合相。作为活性相时,通过异质原子掺杂等方式激活其本征活性,直接应用于催化析氢反应;作为复合相时,其作用有导电基底、高分散载体、耐腐蚀防护层等,通过协同增强效应,提高复合催化剂的整体活性,目前个别非贵金属催化剂的活性几乎可以与Pt基催化剂相媲美。本文总结了这些新型碳基HER催化剂的研究进展及其性能调控策略,并对未来开发低成本、高效率的HER催化剂的探索方向进行了展望。
  • "World energy outlook 2015"[Z]. International Energy Agency.
    "The Outlook for Energy:A View to 2040"[Z]. 2015, Exxon Mobil Corporation.
    Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 2001, 414(6861):332-337.
    Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century-a sustainable development scenario[J]. International Journal of Hydrogen Energy, 2003, 28(3):267-284.
    Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis:Insights into materials design[J]. Science, 2017, 355(6321):1-14.
    Conway B, Tilak B. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H[J]. Electrochimica Acta, 2002, 47(22):3571-3594.
    Jaramillo T F, Jorgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834):100-102.
    Liu Y, Yu H, Quan X, et al. Efficient and durable hydrogen evolution electrocatalyst based on nonmetallic nitrogen doped hexagonal carbon[J]. Scientific Report, 2014, 4:6843.
    Zhao Y, Zhao F, Wang X, et al. Graphitic carbon nitride nanoribbons:graphene-assisted formation and synergic function for highly efficient hydrogen evolution[J]. Angewandte Chemie International Edition, 2014, 53(50):13934-13939.
    Zheng Y, Jiao Y, Zhu Y, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications, 2014, 5:3783.
    Ge J M, Zhang B, Lv L B, et al. Constructing holey graphene monoliths via supramolecular assembly:Enriching nitrogen heteroatoms up to the theoretical limit for hydrogen evolution reaction[J]. Nano Energy, 2015, 15:567-575.
    Duan J J, Chen S, Jaroniec M, et al. Porous C3N4 nanolayers-N-graphene films as catalyst electrodes for highly efficient hydrogen evolution[J]. ACS Nano, 2015, 9(1):931-940.
    Zheng Y, Jiao Y, Li L H, et al. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution[J]. ACS Nano, 2014, 8(5):5290-5296.
    Zhang J, Dai L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting[J]. Angewandte Chemie International Edition, 2016, 55(42):13296-13300.
    Lai J, Li S, Wu F, et al. Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting[J]. Energy & Environmental Science, 2016, 9(4):1210-1214.
    Zhang J, Qu L, Shi G, et al. N,P-Codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions[J]. Angewandte Chemie International Edition, 2016, 55(6):2230-2234.
    Ito Y, Cong W, Fujita T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(7):2131-2136.
    Zhou Y, Leng Y, Zhou W, et al. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction[J]. Nano Energy, 2015, 16:357-366.
    Wei L, Karahan H E, Goh K, et al. A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon[J]. Journal of Materials Chemistry A, 2015, 3(14):7210-7214.
    Yan X, Jia Y, Odedairo T, et al. Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions[J]. Chemical Communications, 2016, 52(52):8156-8159.
    Fan X J, Peng Z W, Wang J J, et al. Carbon-based composite as an efficient and stable metal-free electrocatalyst[J]. Advanced Functional Materials, 2016, 26(21):3621-3629.
    Bian X, Zhu J, Liao L, et al. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres:A highly active catalyst for electrochemical hydrogen evolution[J]. Electrochemistry Communications, 2012, 22:128-132.
    Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene:an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19):7296-7299.
    Zhou Y, Zhou W, Hou D, et al. Metal-carbon hybrid electrocatalysts derived from ion-exchange resin containing heavy metals for efficient hydrogen evolution reaction[J]. Small, 2016, 12(20):2768-2774.
    Han S, Feng Y, Zhang F, et al. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting[J]. Advanced Functional Materials, 2015, 25(25):3899-3906.
    Zhu J, Sakaushi K, Clavel G, et al. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting[J]. Journal of the American Chemical Society, 2015, 137(16):5480-5485.
    Chen Y Y, Zhang Y, Jiang W J, et al. Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution[J]. ACS Nano, 2016, 10(9):8851-8860.
    Han L, Xu M, Han Y, et al. Core-shell-structured tungsten carbide encapsulated within nitrogen-doped carbon spheres for enhanced hydrogen evolution[J]. ChemSusChem, 2016, 9(19):2784-2787.
    Bayatsarmadi B, Zheng Y, Tang Y, et al. Significant enhancement of water splitting activity of N-carbon electrocatalyst by trace level Co doping[J]. Small, 2016, 12(27):3703-3711.
    Cui W, Cheng N, Liu Q, et al. Mo2C nanoparticles decorated graphitic carbon sheets:Biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation[J]. ACS Catalysis, 2014, 4(8):2658-2661.
    Feng L L, Li G D, Liu Y, et al. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts[J]. ACS Applied Materials & Interfaces, 2015, 7(1):980-988.
    Gao S, Li G D, Liu Y, et al. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons[J]. Nanoscale, 2015, 7(6):2306-2316.
    Jin H, Wang J, Su D, et al. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. Journal of the American Chemical Society, 2015, 137(7):2688-2694.
    Liu Y, Li G D, Yuan L, et al. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction[J]. Nanoscale, 2015, 7(7):3130-3136.
    Liu Y, Yu G, Li G D, et al. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites[J]. Angewandte Chemie International Edition, 2015, 54(37):10752-10757.
    Tavakkoli M, Kallio T, Reynaud O, et al. Single-shell carbon-encapsulated iron nanoparticles:synthesis and high electrocatalytic activity for hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(15):4535-4538.
    Yang L, Zhou W, Lu J, et al. Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution[J]. Nano Energy, 2016, 22:490-498.
    Zhou W, Xiong T, Shi C, et al. Bioreduction of precious metals by microorganism:Efficient gold@N-doped carbon electrocatalysts for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2016, 55(29):8416-8420.
    Wang X D, Xu Y F, Rao H S, et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution[J]. Energy & Environmental Science, 2016, 9(4):1468-1475.
    Jiang P, Liu Q, Sun X. NiP2 nanosheet arrays supported on carbon cloth:an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions[J]. Nanoscale, 2014, 6(22):13440-13445.
    Li Q, Xing Z, Wang D, et al. In situ electrochemically activated CoMn-S@NiO/CC nanosheets array for enhanced hydrogen evolution[J]. ACS Catalysis, 2016, 6(5):2797-2801.
    Liang Y, Liu Q, Asiri A M, et al. Self-supported FeP nanorod arrays:A cost-effective 3D hydrogen evolution cathode with high catalytic activity[J]. ACS Catalysis, 2014, 4(11):4065-4069.
    Xing Z, Yang X, Asiri A M, et al. Three-fimensional dtructures of MoS2@Ni vore/dhell nanosheets srray toward dynergetic rlectrocatalytic eater splitting[J]. ACS Applied Materials & Interfaces, 2016, 8(23):14521-14526.
    Zhu W, Tang C, Liu D, et al. A self-standing nanoporous MoP2 nanosheet array:An advanced pH-universal catalytic electrode for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2016, 4(19):7169-7173.
    Feng L L, Fan M, Wu Y, et al. Metallic Co9S8 nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media[J]. Journal of Materials Chemistry A, 2016, 4(18):6860-6867.
    Yang X, Lu A Y, Zhu Y, et al. CoP nanosheet assembly grown on carbon cloth:A highly efficient electrocatalyst for hydrogen generation[J]. Nano Energy, 2015, 15:634-641.
    Xu K, Wang F M, Wang Z X, et al. Component-controllable WS2(1-x)Se2x nanotubes for efficient hydrogen evolution reaction[J]. ACS Nano, 2014, 8(8):8468-8476.
    Su H, Wang H H, Zhang B, et al. Enriching Co nanoparticles inside carbon nanofibers via nanoscale assembly of metal-organic complexes for highly efficient hydrogen evolution[J]. Nano Energy, 2016, 22:79-86.
    Wang H, Lu Z, Kong D, et al. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution[J]. ACS Nano, 2014, 8(5):4940-4947.
    Kong D, Wang H, Lu Z, et al. CoSe2 nanoparticles grown on carbon fiber paper:An efficient and stable electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2014, 136(13):4897-4900.
    Wang K, Xi D, Zhou C, et al. CoSe2 necklace-like nanowires supported by carbon fiber paper:A 3D integrated electrode for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(18):9415-9420.
    Wu Z Y, Hu B C, Wu P, et al. Mo2C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution[J]. NPG Asia Materials, 2016, 8(7):e288.
    Wang Z L, Hao X F, Jiang Z, et al. C and N Hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015, 137(48):15070-15073.
    Zheng Y R, Gao M R, Yu Z Y, et al. Cobalt diselenide nanobelts grafted on carbon fiber felt:an efficient and robust 3D cathode for hydrogen production[J]. Chemical Science, 2015, 6(8):4594-4598.
    Wang K, Zhou C, Xi D, et al. Component-controllable synthesis of Co(SxSe 1-x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction[J]. Nano Energy, 2015, 18:1-11.
    Wang X, Gan X, Hu T, et al. Noble-metal-free hybrid membranes for highly efficient hydrogen evolution[J]. Advanced Materials, 2017, 29(4).
    Qiu H J, Ito Y, Cong W, et al. Nanoporous graphene with single-atom nickel dopants:An efficient and stable catalyst for electrochemical hydrogen production[J]. Angewandte Chemie International Edition, 2015, 54(47):14031-14035.
    Fei H, Dong J, Arellano-Jimenez M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communications, 2015, 6:8668.
    Hu W H, Shang X, Han G Q, et al. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution[J]. Carbon, 2016, 100:236-242.
    Li H, Yu K, Li C, et al. Charge-transfer induced high efficient hydrogen evolution of MoS2/graphene cocatalyst[J]. Scientific Report, 2015, 5:18730.
    Huang Z, Lv C, Chen Z, et al. One-pot synthesis of diiron phosphide/nitrogen-doped graphene nanocomposite for effective hydrogen generation[J]. Nano Energy, 2015, 12:666-674.
    Yan Y, Thia L, Xia B Y, et al. Construction of efficient 3D gas evolution electrocatalyst for hydrogen evolution:Porous FeP nanowire arrays on graphene sheets[J]. Advanced Science(Weinh), 2015, 2(8):1500120.
    Duan J, Chen S, Chambers B A, et al. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes[J]. Advanced Materials, 2015, 27(28):4234-4241.
    Wang J, Xia H, Peng Z, et al. Graphene porous foam loaded with molybdenum carbide nanoparticulate electrocatalyst for effective hydrogen generation[J]. Chem Sus Chem, 2016, 9(8):855-862.
    Ma R, Zhou Y, Chen Y, et al. Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst[J]. Angewandte Chemie International Edition, 2015, 54(49):14723-14727.
    Deng J, Ren P, Deng D, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(7):2100-2104.
    Wang J, Wang G, Miao S, et al. Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions[J]. Faraday Discuss, 2014, 176:135-151.
    Fan X, Peng Z, Ye R, et al. M3C(M:Fe, Co, Ni) nanocrystals encased in graphene nanoribbons:an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions[J]. ACS Nano, 2015, 9(7):7407-7418.
    Peng X, Hu L, Wang L, et al. Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets:A high-efficiency electrocatalyst for hydrogen evolution reaction[J]. Nano Energy, 2016, 26:603-609.
    He C, Tao J. Two-dimensional TaC nanosheets on a reduced graphene oxide hybrid as an efficient and stable electrocatalyst for water splitting[J]. Chemical Communications, 2016, 52(57):8810-8813.
    Chen W F, Wang C H, Sasaki K, et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production[J]. Energy & Environmental Science, 2013, 6(3):943.
    Esposito D V, Hunt S T, Kimmel Y C, et al. A new class of electrocatalysts for hydrogen production from water electrolysis:Metal monolayers supported on low-cost transition metal carbides[J]. Journal of the American Chemical Society, 2012, 134(6):3025-3033.
    Cui W, Liu Q, Cheng N, et al. Activated carbon nanotubes:A highly-active metal-free electrocatalyst for hydrogen evolution reaction[J]. Chemical Communications, 2014, 50(66):9340-9342.
    Liu Q, Tian J, Cui W, et al. Carbon nanotubes decorated with CoP nanocrystals:A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J]. Angewandte Chemie International Edition, 2014, 53(26):6710-6714.
    Wang T, Guo Y, Zhou Z, et al. Ni-Mo nanocatalysts on N-doped graphite nanotubes for highly efficient electrochemical hydrogen evolution in acid[J]. ACS Nano, 2016, 10(11):10397-10403.
    Wang D Y, Gong M, Chou H L, et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015, 137(4):1587-1592.
    Li D J, Maiti U N, Lim J, et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction[J]. Nano Letters, 2014, 14(3):1228-1233.
    Sljukic B, Santos D M, Vujkovic M, et al. Molybdenum carbide nanoparticles on carbon nanotubes and carbon xerogel:Low-cost cathodes for hydrogen production by alkaline water electrolysis[J]. ChemSusChem, 2016, 9(10):1200-1208.
    Deng J, Ren P, Deng D, et al. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction[J]. Energy & Environmental Science, 2014, 7(6):1919.
    Zou X, Huang X, Goswami A, et al. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values[J]. Angewandte Chemie International Edition, 2014, 53(17):4372-4376.
    Peng S, Li L, Han X, et al. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution[J]. Angewandte Chemie International Edition, 2014, 53(46):12594-12599.
    Zhang R, Li X, Zhang L, et al. A Flexible platform containing graphene mesoporous structure and carbon nanotube for hydrogen evolution[J]. Advanced Science(Weinh), 2016, 3(11):1600208.
    Jiang Y, Li X, Yu S, et al. Reduced graphene oxide-modified carbon nanotube/polyimide film supported MoS2 nanoparticles for electrocatalytic hydrogen evolution[J]. Advanced Functional Materials, 2015, 25(18):2693-2700.
    Youn D H, Han S, Kim J Y, et al. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube graphene hybrid support[J]. ACS Nano, 2014, 8(5):5164-5173.
    Stock N, Biswas S. Synthesis of metal-organic frameworks(MOFs):Routes to various MOF topologies, morphologies, and composites[J]. Chemical Review, 2012, 112(2):933-969.
    Zhang H, Ma Z, Duan J, et al. Active sites implanted carbon cages in core-shell architecture:Highly active and durable electrocatalyst for hydrogen evolution reaction[J]. ACS Nano, 2016, 10(1):684-694.
    Hou Y, Wen Z, Cui S, et al. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting[J]. Advanced Functional Materials, 2015, 25(6):872-882.
    Zhou W J, Lu J, Zhou K, et al. CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction[J]. Nano Energy, 2016, 28:143-150.
    Sun C, Dong Q, Yang J, et al. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting[J]. Nano Research, 2016, 9(8):2234-2243.
    Yang Y, Lun Z, Xia G, et al. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst[J]. Energy & Environmental Science, 2015, 8(12):3563-3571.
    Yin J, Fan Q, Li Y, et al. Ni-C-N Nanosheets as catalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2016, 138(44):14546-14549.
    Li J S, Wang Y, Liu C H, et al. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution[J]. Nature Communications, 2016, 7:11204.
  • 加载中
图(1)
计量
  • 文章访问数:  924
  • HTML全文浏览量:  258
  • PDF下载量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 录用日期:  2019-04-30
  • 修回日期:  2019-04-02
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回