留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层石墨烯表面钠原子吸附行为的第一性原理

孙闻 杨绍斌 沈丁 董伟

孙闻, 杨绍斌, 沈丁, 董伟. 单层石墨烯表面钠原子吸附行为的第一性原理. 新型炭材料, 2019, 34(2): 146-152.
引用本文: 孙闻, 杨绍斌, 沈丁, 董伟. 单层石墨烯表面钠原子吸附行为的第一性原理. 新型炭材料, 2019, 34(2): 146-152.
SUN Wen, YANG Shao-bin, SHEN Ding, DONG Wei. The formation of NaxC72(1 ≤ x ≤ 7) on a single layer graphene surface:a first-principles study. New Carbon Mater., 2019, 34(2): 146-152.
Citation: SUN Wen, YANG Shao-bin, SHEN Ding, DONG Wei. The formation of NaxC72(1 ≤ x ≤ 7) on a single layer graphene surface:a first-principles study. New Carbon Mater., 2019, 34(2): 146-152.

单层石墨烯表面钠原子吸附行为的第一性原理

基金项目: 国家自然科学基金(51274119).
详细信息
    通讯作者:

    杨绍斌,博士,教授.E-mail:lgdysb@163.com

  • 中图分类号: TM912

The formation of NaxC72(1 ≤ x ≤ 7) on a single layer graphene surface:a first-principles study

Funds: National Natural Science Foundation of China(51274119).
  • 摘要: 构建了3种典型的石墨烯吸附钠原子模型(NaxC72(1 ≤ x ≤ 7)),采用密度泛函理论对其进行了系统计算,研究了最低能量构型的吸附能、平均电压、重叠布居以及原子布居、电荷密度差分、电子局域密度和态密度等性质。通过吸附能确定石墨烯表面最可能的钠原子吸附形式,当钠原子吸附数量x<5时,钠原子优先以双面吸附的形式吸附于石墨烯表面;当x ≥ 5时,钠原子以团簇的形式吸附于石墨烯表面。平均电压计算结果表明,随着x的增加,平均电压先降低后出现升高趋势,对应x=4时石墨烯吸附钠的最大容量达124 mAh/g。电荷密度差分、电子局域密度及Mulliken布居分析表明,临近石墨烯表面的钠原子3s电子转移至石墨烯的反键π轨道,钠原子和碳原子之间形成弱离子键,距离石墨烯表面较远的钠原子3s电子与周围钠原子共享,钠原子之间形成金属键。态密度计算结果表明,随着x的增加,NaxC72(1 ≤ x ≤ 7)的费米能级向石墨烯反键π轨道移动,导电性增强。
  • Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8):2338-2360.
    Zhou Y, Yang Y, Jiao M, et al. What is the promising anode material for Na ion batteries?[J]. Science Bulletin, 2018, 63(3):146-148.
    Yang L, Zhu Y E, Sheng J, et al. T-Nb2O5/C Nanofibers prepared through electrospinning with prolonged cycle durability for high-rate sodium-ion batteries induced by pseudocapacitance[J]. Small, 2017, 13(46):1702588.
    Liu H, Su D, Zhou R, et al. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage[J]. Advanced Energy Materials, 2012, 2(8):970-975.
    Stephenson T, Li Z, Olsen B, et al. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites[J]. Energy & Environmental Science, 2014, 7(1):209-231.
    Zhao W, Ribeiro R M, Toh M, et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2[J]. Nano letters, 2013, 13(11):5627-5634.
    马晓轩, 郝健, 李垚, 等. 类石墨烯二硫化钼在锂离子电池负极材料中的研究进展[J]. 材料导报, 2014, 28(11):1-9. (MA X, HAO J, LI Y, et al. Research progress of 2H-MoS2 based materials in the application to lithium ion batteries anodes[J]. Materials Review A:Review, 2014, 28(6):1-9.)
    Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 28:1172-1175.
    Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical reviews, 2014, 114(23):11636-11682.
    Luo W, Jian Z, Xing Z, et al. Electrochemically expandable soft carbon as anodes for Na-ion batteries[J]. ACS Cent Sci, 2015, 1:516-522.
    闻雷, 刘成名, 宋仁升, 等. 石墨烯材料的储锂行为及其潜在应用[J]. 化学学报, 2014, 72(3):333-344. (WEN L, SONG R, SHI Y, et al. Lithium storage characteristics and possible applications of graphene materials[J]. Acta Chimica Sinica, 2014, 72(3):333-344.)
    Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4):1271-1273.
    Thomas P, Billaud D. Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties[J]. Electrochimica Acta, 2002, 46(1):39-47.
    钱江锋, 高学平, 杨汉西. 电化学储钠材料的研究进展[J]. 电化学, 2013, 19(6):523-529. (QIAN J, GAO X, YANG Hi. Electrochemical Na-storage materials and their applications for Na-ion batteries[J]. J Electrochem (in Chinese), 2013(6):523-529.)
    邱珅, 吴先勇, 卢海燕, 等. 碳基负极材料储钠反应的研究进展[J]. 储能科学与技术,2016, 5(3):258-267. (QIU S, WU X, LU H, et al. Research progress of carbon-based sodium-storage anode materials[J]. Energy Storage Science and Technology, 2016, 5(3):258-267.)
    Lotfabad E M, Ding J, Cui K, et al. High-density sodium and lithium ion battery anodes from banana peels[J]. Acs Nano, 2014, 8(7):7115-7129.
    Bai Y, Wang Z, Wu C, et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery[J]. ACS Applied Materials & Interfaces, 2015, 7(9):5598-5604.
    Xiao L, Cao Y, Henderson W A, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries[J]. Nano Energy, 2016, 19:279-288.
    Malyi O I, Sopiha K, Kulish V V, et al. A computational study of Na behavior on graphene[J]. Applied Surface Science, 2015, 333:235-243.
    Chan K T, Neaton J B, Cohen M L. First-principles study of metal adatom adsorption on graphene[J]. Physical Review B, 2008, 77(23):235430.
    Gong C, Lee G, Shan B, et al. First-principles study of metal-graphene interfaces[J]. Journal of Applied Physics, 2010, 108(12):123711.
    Khomyakov P A, Giovannetti G, Rusu P C, et al. First-principles study of the interaction and charge transfer between graphene and metals[J]. Physical Review B, 2009, 79(19):195425.
    Boukhvalov D W, Katsnelson M I, Lichtenstein A I. Hydrogen on graphene:Electronic structure, total energy, structural distortions, and magnetism from first-principles calculation[J]. Physical Review B, 2008, 77(3):035427.
    Zhu Z H, Lu G Q. Comparative study of Li, Na, and K adsorptions on graphite by using ab initio method[J]. Langmuir, 2004, 20(24):10751-10755.
    Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B):B864.
    Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B Condensed Matter, 1990, 41(11):7892.
    Segall M D, Shah R, Pickard C J, et al. Population analysis of plane-wave electronic structure calculations of bulk materials[J]. Physical Review B Condensed Matter, 1996, 54(23):16317.
    Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15):1787-1799.
    Chadi D J. Special points for Brillouin-zone integrations[J]. Physical Review B Condensed Matter, 1977, 16(4):5188——5192.
    沈丁, 孙闻, 李思南, 等. 石墨嵌锂的结构转变和弹性性质计算研究[J]. 原子与分子物理学报, 2017, 2:038. (SHEN D, SUN W, LI S, et al. Calculation of structural transformations and elastic properties of graphite in the in sertion process of lithium[J]. J Atom Mol Phys, 2017, 2:038.)
    赵银昌, 戴振宏, 隋鹏飞,等. 单层BC7片的储锂容量研究[J]. 中国科学:物理学力学天文学, 2013(9):48-52. (ZHAO C, DAI Z, SUI P, et al. Study of lithium storage capacity on single BC7 sheet[J]. Sci Sin-Phys Mech Astron, 2013, 43, 1052.)
    Burdett J K, McCormick T A. Electron localization in molecules and solids:The meaning of ELF[J]. The Journal of Physical Chemistry A, 1998, 102(31):6366-6372.
    De Santis L, Resta R. Electron localization at metal surfaces[J]. Surface science, 2000, 450(1-2):126-132.
    Tsirelson V, Stash A. Determination of the electron localization function from electron density[J]. Chemical Physics Letters, 2002, 351(1-2):142-148.
    杜瑞, 陈玉红, 张致龙, 等. H2分子在Li3N(100)表面吸附的第一性原理研究[J]. 化学学报, 2011, 69(10):1167-1172. (DU R, CHEN Y H, ZHANG Z L, et al. First principles study of H2 molecule adsorption on Li3 N(110) surfaces[J]. Acta Chim Sinica, 2011, 69(10):1167-1172)
    陈玉红, 刘婷婷, 张梅玲,等. H2分子在Mg3N表面吸附的第一性原理研究[J]. 化学学报, 2017, 75(7):708-714. (CHEN Y, LIU T, ZHANG M, et al. First principles study on the adsorption of H2 molecules on Mg3N2 surface[J]. Acta Chim. Sinica, 2017, 75(7):708-714.)
    刘贵立, 张国英, 鲍君善, 等. TiF3,TiCl3中阴阳离子对LiBH4协同催化机理的第一性原理研究[J]. 物理学报, 2014(24):475-482. (LIU G, ZHANG G, BAO J, et al. A first principles study on the synergistic catalytic mechanism of anion, cation ions in TiF3, TiCl3 catalysts for LiBH4 hydrogen-storage materials[J]. Acta Physica Sinica 2014(24):475-482.)
    卢天, 陈飞武. 原子电荷计算方法的对比[J]. 物理化学学报, 2012, 28(1):1-18. (LU T, CHEN F. Comparison of computational methods for atomic charges[J]. Acta Physico-Chimica Sinica, 2012, 28(1):1-18.)
  • 加载中
图(1)
计量
  • 文章访问数:  527
  • HTML全文浏览量:  120
  • PDF下载量:  395
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-12
  • 录用日期:  2019-04-30
  • 修回日期:  2019-04-10
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回