留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米红外(Nano IR)研究纤维素基炭纤维在制备过程中基团的变化

宋芸佳 陈淙洁 吴琪琳

宋芸佳, 陈淙洁, 吴琪琳. 纳米红外(Nano IR)研究纤维素基炭纤维在制备过程中基团的变化. 新型炭材料, 2019, 34(3): 296-301.
引用本文: 宋芸佳, 陈淙洁, 吴琪琳. 纳米红外(Nano IR)研究纤维素基炭纤维在制备过程中基团的变化. 新型炭材料, 2019, 34(3): 296-301.
SONG Yun-jia, CHEN Cong-jie, WU Qi-lin. Evolution of functional groups during the preparation of cellulose-based carbon fibers characterized by nanoscale infrared spectroscopy. New Carbon Mater., 2019, 34(3): 296-301.
Citation: SONG Yun-jia, CHEN Cong-jie, WU Qi-lin. Evolution of functional groups during the preparation of cellulose-based carbon fibers characterized by nanoscale infrared spectroscopy. New Carbon Mater., 2019, 34(3): 296-301.

纳米红外(Nano IR)研究纤维素基炭纤维在制备过程中基团的变化

基金项目: 国家重点研发计划(2016YFB0303201).
详细信息
    作者简介:

    宋芸佳,硕士研究生.E-mail:18268256082@163.com

    通讯作者:

    吴琪琳,教授.E-mail:wql@dhu.edu.cn

  • 中图分类号: TQ342+.74

Evolution of functional groups during the preparation of cellulose-based carbon fibers characterized by nanoscale infrared spectroscopy

Funds: National Key R&D Program of China (2016YFB0303201).
  • 摘要: 从纤维截面微区化学基团变化的角度,深入地解析了纤维素基炭纤维制备过程中微观结构的演变。首先利用超薄切片技术获得低温热解各阶段(室温~600℃)纤维的横截面,通过纳米红外技术(Nano IR)获得了纤维的形貌、红外光谱图以及截面微区基团分布的mapping图。结果发现-OH、CO基团在纤维截面上分布不均匀,裂解过程中基团变化显著,皮层和芯层反应不同步;拉曼光谱分析了ID/IG的变化,进一步证实了截面微区结构的不均质导致的性能变化。
  • 孙祝林, 奚立华, 李红, 等. 中间相沥青纤维的预氧化和应力应变行为研究[J]. 新型炭材料, 2017, 32(3):284-288. (Sun Z L, Xi L H, Li H, et al. Fourier transform infrared and dynamic thermomechanical analyses of mesophase pitch fibers during oxidative stabilization[J]. New Carbon Materials, 2017, 32(3):284-288.)
    Viana S T, Scariot V K, Provensi A, et al. Fabrication and thermal analysis of epoxy resin-carbon fiber fabric composite plate-coil heat exchangers[J]. Applied Thermal Engineering, 2017, 127:1451-1460.
    Thunga M, Chen K, Grewell D, et al. Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers[J]. Carbon,2014, 68(2):159-166.
    段春婷, 郑冬芳, 刘均庆, 等. 中间相沥青表征研究进展[J]. 新型炭材料, 2018,33(03):193-202. (Duan C T, Zheng D F, Liu J Q, et al. Research progress on the characterization of mesophase pitch[J]. New Carbon Materials, 2018, 33(03):193-202.)
    Dazzi A, Prater C B. AFM-IR:Technology and applications in nanoscale infrared spectroscopy and chemical imaging[J]. Chemical Reviews, 2017, 117(7):5146-5173.
    Rice J H. Nanoscale optical imaging by atomic force infrared microscopy[J]. Nanoscale, 2010, 2(5):660-667.
    Mcleod A S, Kelly P, Goldflam M D, et al. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants[J]. Physical Review B, 2014, 90(8):085136.
    Ryu M, Kobayashi H, Balcytis A, et al. Nanoscale chemical mapping of laser-solubilized silk[J], Materials Research Express, 2017, 4(11):1-6.
    Baldassarre L, Giliberti V, Rosa A, et al. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy[J]. Nanotechnology, 2016, 27(7):075101.
    Ruggeri F S, Vieweg S, Cendrowska U, et al. Nanoscale studies link amyloid maturity with polyglutamine diseases onset[J]. Scientific Reports, 2016, 6:31155.
    Tang F, Bao P, Su Z. Analysis of nanodomain composition in high-Impact polypropylene by atomic force microscopy-infrared[J]. Analytical Chemistry, 2016, 88(9):4926-4930.
    Li N, Taylor L S. Nanoscale infrared, thermal, and mechanical characterization of telaprevir-polymer miscibility in amorphous solid dispersions prepared by solvent evaporation[J]. Molecular Pharmaceutics, 2016, 13(3):1123-1136.
    Lo M K F, Dazzi A, Marcott C A, et al. Nanoscale chemical-mechanical characterization of nanoelectronic low-k dielectric/Cu interconnects[J]. ECS Journal of Solid State Science and Technology, 2016, 5(4):P3018-P3024.
    Liu Z, Nørgaard K, Overgaard M H, et al. Direct observation of oxygen configuration on individual graphene oxide sheets[J]. Carbon, 2018, 127:141-148.
    邓李慧, 陈淙洁, 陈振阳, 等. 一种制备纤维横截面切片的包埋板[P].ZL201320844419.6[P], 2013, 12. (Deng L H, Chen C J, Chen Z Y, et al. Embedded plate for preparing fiber cross section, ZL201320844419.6[P], 2013, 12.)
    Dazzi A, Prater C B, Hu Q, et al. AFM-IR:Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization[J]. Applied Spectroscopy, 2012, 66(12):1365.
    杨序纲, 吴琪琳. 材料表征的近代物理方法[M]. 北京:科学出版社, 2013:235-303. (Yang X G, et al. Modern Physics Method for Material Characterization[M]. Beijing:Science Press, 2013:235-303.)
    任桂知, 陈淙洁, 邓李慧, 等. 拉曼光谱分析炭纤维表面的微观结构(英文)[J]. 新型炭材料, 2015, 30(5):476-480. (Ren G Z, Chen C J, Deng L H, et al. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy[J]. New Carbon Materials, 2015, 30(5):476-480.)
    苏灿军, 高爱君, 罗莎, 等. PAN基炭纤维皮芯结构的高温演变规律[J]. 新型炭材料, 2012, 27(4):288-293. (Shu C J, Gao A J, Luo S, et al. High temperature evolution of PAN-based carbon fiber sheath core structure[J]. New Carbon Materials, 2018, 33(03):193-202.
    陈淙洁, 邓李慧, 吴琪琳. 碳纤维微观结构研究进展[J]. 材料导报, 2014(s1):21-25. (Chen C J, Deng L H, Wu Q L, et al. Research progress on microstructures of carbon fibers[J]. Materials Review, 2014(s1):21-25.)
    陈淙洁, 邓李慧, 陈师, 等. 黏胶纤维在热解过程中微孔结构的演变[J]. 宇航材料工艺, 2015, 45(03):24-27. (Chen C J, Deng L H, Chen S, et al. Evolution of microporosities in rayon fibers during pyrolysis[J]. Aerospace Materials and Technology, 2015, 45(03):24-27.)
  • 加载中
图(1)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  96
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-15
  • 录用日期:  2019-06-27
  • 修回日期:  2019-04-20
  • 刊出日期:  2019-06-28

目录

    /

    返回文章
    返回