留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯结构的研究进展

黄满华 唐志红 杨俊和

黄满华, 唐志红, 杨俊和. 氧化石墨烯结构的研究进展. 新型炭材料, 2019, 34(4): 307-314.
引用本文: 黄满华, 唐志红, 杨俊和. 氧化石墨烯结构的研究进展. 新型炭材料, 2019, 34(4): 307-314.
HUANG Man-hua, TANG Zhi-hong, YANG Jun-he. Research progress on the structure of graphene oxide. New Carbon Mater., 2019, 34(4): 307-314.
Citation: HUANG Man-hua, TANG Zhi-hong, YANG Jun-he. Research progress on the structure of graphene oxide. New Carbon Mater., 2019, 34(4): 307-314.

氧化石墨烯结构的研究进展

基金项目: 国家自然科学基金(51272157);上海市自然科学基金(16ZR1423400).
详细信息
    通讯作者:

    杨俊和,教授.E-mail:jhyang@usst.edu.cn

  • 中图分类号: TQ127.1+1

Research progress on the structure of graphene oxide

Funds: National Natural Science Foundation of China (51272157); Shanghai Natural Science Foundation (16ZR1423400).
  • 摘要: 掌握氧化石墨烯(Graphene oxide,GO)的结构是理解其性质并付诸应用的基础,然而GO的官能团种类及排列方式繁杂。大多数实验得到的官能团等数据相似,但在数据的解读尚未达成统一。目前广泛认可的GO模型有LK模型、动态结构模型和二组分结构模型等。GO的结构继承了其前驱体氧化石墨的成果—LK模型,这一模型被广泛用于解释GO的绝缘性和亲水性等。然而LK模型近年来也受到许多新的研究挑战。Dimiev根据酸性起源的研究提出了GO的动态结构模型,认为GO的结构在液相制备和存放中不断改变。而Rourke等则根据纳米碳管的酸化氧化研究,提出GO的二组分结构模型,将GO分为完整片层和氧化碎片两部分,分别从二者性质出发解释GO的性质。
  • Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Geim A K, Novoselov K S. The rise of graphene[J].Nature Mater, 2007, 6:183-191.
    Brodie B. Note sur un nouveau procédé pour la purification et la désagrégation du graphite[J]. Ann Chim Phys, 1855, 45:351-353.
    Ferrari A C, Bonaccorso F, Fal'ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J].Nanoscale, 2015, 7(11):4598-4610.
    Singh R K, Kumar R, Singh D P. Graphene oxide:strategies for synthesis, reduction and frontier applications[J]. RSC Adv, 2016, 6(69):64993-65011.
    Kim J, Cote L J, Huang J. Two dimensional soft material:New faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8):1356-1364.
    Ma X, Zachariah M R, Zangmeister C D. Reduction of suspended graphene oxide single sheet nanopaper:The effect of crumpling[J]. The Journal of Physical Chemistry C, 2013, 117(6):3185-3191.
    Guo W, Jiang L. Two-dimensional ion channel based soft-matter piezoelectricity[J].Science China Materials, 2014, 57(1):2-6.
    Hong S H, Shen T Z, Song J K. Controlling wrinkles and assembly patterns in dried graphene oxide films using lyotropic graphene oxide liquid crystals[J]. Liquid Crystals, 2016:1-9.
    Zhao F, Zhao Y, Chen N, et al. Stimuli-deformable graphene materials:from nanosheet to macroscopic assembly[J]. Materials Today, 2016, 19(3):146-156.
    Narayan R, Kim J E, Kim J Y, et al. Graphene oxide liquid crystals:Discovery, evolution and applications[J]. Advanced Materials, 2016, 28(16):3045-3068.
    Shen T Z, Hong S H, Lee B, et al. Bottom-up and top-down manipulations for multi-order photonic crystallinity in a graphene-oxide colloid[J]. Npg Asia Materials, 2016, 8(8):296.
    Li Z, Liu Z, Sun H, et al. Superstructured assembly of nanocarbons:Fullerenes, nanotubes, and graphene[J].Chemical Reviews, 2015, 115(15):7046-7117.
    Wang M, Niu Y, Zhou J, et al. The dispersion and aggregation of graphene oxide in aqueous media[J].Nanoscale, 2016, 8(30):14587-14592.
    Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited[J].The Journal of Physical Chemistry B, 1998, 102(23):4477-4482.
    Dimiev A M, Alemany L B, Tour J M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model[J]. ACS Nano, 2013, 7(1):576-588.
    Hofmann U, Holst R. Vber die Säurenatur und die Methylierung von Graphitoxyd[J].Berichte der deutschen chemischen Gesellschaft (A and B Series), 1939, 72(4):754-771.
    Tararan A, Zobelli A, Benito A M, et al. Revisiting graphene oxide chemistry via spatially-resolved electron energy loss spectroscopy[J].Chemistry of Materials, 2016, 28(11):3741-3748.
    Gomez-Navarro C, Meyer J C, Sundaram R S, et al. Atomic structure of reduced graphene oxide[J]. Nano Letters, 2010, 10(4):1144-1148.
    Erickson K, Erni R, Lee Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40):4467-4472.
    Mkhoyan K A. Atomic and electronic structure of graphene oxide[J].Nano Lett, 2009, 9:1058-1063.
    Sokolov D A, Morozov Y V, McDonald M P, et al. Direct observation of single layer graphene oxide reduction through spatially resolved, single sheet absorption/emission microscopy[J].Nano Letters, 2014, 14(6):3172-3179.
    Wahab H, Xu G, Jansing C, et al. Signatures of different carbon bonds in graphene oxide from soft x-ray reflectometry[J]. X-Ray Spectrometry, 2015, 44(6):468-4673.
    Guo J, Lee J, Contescu C I, et al. Crown ethers in graphene[J].Nature Communications, 2014, 5:5389.
    Choudhary S, Mungse H P, Khatri O P. Hydrothermal deoxygenation of graphene oxide:Chemical and structural evolution[J]. Chemistry, an Asian journal, 2013, 8(9):2070-2078.
    Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J].Chem Mat, 2006, 18(11):2740-2749.
    Dimiev A, Kosynkin D V, Alemany L B, et al. Pristine graphite oxide[J].Journal of the American Chemical Society, 2012, 134(5):2815-2822.
    Dimiev A M. Mechanism of Formation and Chemical Structure of Graphene oxide[M]. Graphene Oxide:Fundamentals and Applications, 2016:36-84.
    Whitby R L. Chemical control of graphene architecture:tailoring shape and properties[J]. ACS Nano, 2014, 8(10):9733-9754.
    Wang Z, Shirley M D, Meikle S T, et al. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions[J]. Carbon, 2009, 47(1):73-79.
    Rourke J P, Pandey P A, Moore J J, et al. The real graphene oxide revealed:Stripping the oxidative debris from the graphene-like sheets[J]. Angewandte Chemie, 2011, 50(14):3173-3177.
    Fan X, Peng W, Li Y, et al.Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation[J]. Advanced Materials, 2008, 20(23):4490-4493.
    Thomas H R, Day S P, Woodruff W E, et al. Deoxygenation of graphene oxide:Reduction or cleaning?[J]. Chemistry of Materials, 2013, 25(18):3580-3588.
    Thomas HR, Vallés C, Young RJ, et al. Identifying the fluorescence of graphene oxide[J].J Mater Chem C, 2013, 1(2):338-342.
    Karabanova L V, Whitby R L D, Korobeinyk A, et al. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents[J].Composites Science and Technology, 2012, 72(8):865-872.
    Guo Z, Wang S, Wang G, et al. Effect of oxidation debris on spectroscopic and macroscopic properties of graphene oxide[J]. Carbon, 2014, 76:203-211.
    Bonanni A, Ambrosi A, Chua CK, et al. Oxidation debris in graphene oxide is responsible for its inherent electroactivity[J].ACS Nano, 2014, 8(5):4197-4204.
    Chen X, Chen B. Direct observation, molecular structure, and location of oxidation debris on graphene oxide nanosheets[J]. Environmental Science & Technology, 2016, 50(16):8568-8577.
    Dimiev A M, Polson T A. Contesting the two-component structural model of graphene oxide and reexamining the chemistry of graphene oxide in basic media[J]. Carbon, 2015, 93:544-554.
    Rourke J P, Wilson N R. A defence of the two-component model of graphene oxide[J]. Carbon, 2016, 96:339-3341.
    Rodriguez Pastor I, Ramos Fernandez G, Varela Rizo H, et al. Towards the understanding of the graphene oxide structure:How to control the formation of humic- and fulvic-like oxidized debris[J].Carbon, 2015, 84:299-309.
    Sun Y, Wang S, Li C, et al. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties[J]. Physical Chemistry Chemical Physics:PCCP, 2013, 15(24):9907-9913.
    Fan T, Zeng W, Tang W, et al. Controllable size-selective method to prepare graphene quantum dots from graphene oxide[J]. Nanoscale Research Letters, 2015, 10:55.
    Naumov A, Grote F, Overgaard M, et al. Graphene oxide:A one- versus two-component material[J]. Journal of the American Chemical Society, 2016, 138(36):11445-11448.
    Dave SH, Gong C, Robertson AW, et al. Chemistry and structure of graphene oxide via direct imaging[J]. ACS Nano, 2016, 10(8):7515-7522.
    Spector MS, Naranjo E, Chiruvolu S, et al. Conformations of a tethered membrance crumpling in gaphitic oxide[J]. Phys Rev Lett., 1994, 73(21):2867-2870.
    Wen X, Garland CW, Hwa T, et al. Crumpled and collapsed conformation in graphite oxide membranes[J]. Nature, 1992, 355(6359):426-428.
  • 加载中
图(1)
计量
  • 文章访问数:  525
  • HTML全文浏览量:  158
  • PDF下载量:  389
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-05
  • 录用日期:  2019-09-10
  • 修回日期:  2019-07-02
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回