留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二硫苏糖醇/多壁碳纳米管阻隔层抑制锂硫电池的穿梭效应

王杰 孙晓刚 李旭 陈玮

王杰, 孙晓刚, 李旭, 陈玮. 二硫苏糖醇/多壁碳纳米管阻隔层抑制锂硫电池的穿梭效应. 新型炭材料, 2019, 34(4): 333-340.
引用本文: 王杰, 孙晓刚, 李旭, 陈玮. 二硫苏糖醇/多壁碳纳米管阻隔层抑制锂硫电池的穿梭效应. 新型炭材料, 2019, 34(4): 333-340.
WANG Jie, SUN Xiao-gang, LI Xu, CHEN Wei. A multi-wall carbon nanotube/dithiothreitol interlayer to inhibit the shuttling of lithium polysulfides in a Li-S battery. New Carbon Mater., 2019, 34(4): 333-340.
Citation: WANG Jie, SUN Xiao-gang, LI Xu, CHEN Wei. A multi-wall carbon nanotube/dithiothreitol interlayer to inhibit the shuttling of lithium polysulfides in a Li-S battery. New Carbon Mater., 2019, 34(4): 333-340.

二硫苏糖醇/多壁碳纳米管阻隔层抑制锂硫电池的穿梭效应

基金项目: 江西省科技厅科研项目(20142BBE50071);江西省教育厅(KJLD13006).
详细信息
    作者简介:

    王杰,硕士研究生.E-mail:464425175@qq.com

    通讯作者:

    孙晓刚,教授.E-mail:xiaogangsun@163.com

  • 中图分类号: TM912.9

A multi-wall carbon nanotube/dithiothreitol interlayer to inhibit the shuttling of lithium polysulfides in a Li-S battery

Funds: Science and Technology Project Founded by the Education Department of Jiangxi Province (20142BBE50071); Education Department of Jiangxi Province(KJLD13006).
  • 摘要:

    二硫苏糖醇(DTT)作为剪切剂,对高阶多硫化物进行剪切阻止其溶解,抑制穿梭效应的产生。以二硫苏糖醇(DTT)和多壁碳纳米管(MWCNTs)复合薄膜作为锂硫电池正极片与隔膜之间的阻隔层,抑制多硫化物的溶解和扩散,阻止穿梭效应,减小活性物质的损失,提高锂硫电池的容量和循环性能。利用透射电子显微镜(TEM)和扫描电镜(SEM)等进行结构和性能的表征。电化学测试结果表明,含DTT/MWCNTs阻隔层的锂硫电池在0.2 C倍率首次放电比容量达到1 674 mAh/g,活性物质的利用率达到99.9%。在1 C充放电300次循环后,容量依然保持在780 mAh/g,是首次放电容量1 094 mAh/g的71.3%,且库伦效率保持在95.3%以上。在5 C和10 C倍率下充放电,电池比容量分别达到597和214 mAh/g。

  • Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
    Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1):19-29.
    Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5):1125-1134.
    Huang H, Shen Y, Xia Y, et al. C-S hybrids prepared by electrodeposition and thermal diffusion methods from kapok-based amorphous carbon flakes as the cathode materials of Li-S batteries[J]. New Carbon Materials, 2017, 32(5):427-433.
    Niu S Z, Wu S, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials, 2017, 32(4):289-296.
    Kim H, Lim H D, Kim J, et al. Graphene for advanced Li/S and Li/air batteries[J]. Journal of Materials Chemistry A, 2013, 2(1):33-47.
    EVERS Scott; NAZAR, Linda F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research, 2012, 46(5):1135-1143.
    Suo L, Hu Y S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4(2):1481-1489.
    Xiao Z, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(18):2891-2898.
    Yuan Zhe. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1):519-527.
    Lamoureux G V, Whitesides G M. Synthesis of dithiols as reducing agents for disulfides in neutral aqueous solution and comparison of reduction potentials[J]. Cheminform, 1993, 24(32):633-641.
    Nordstrand K, Slund F, Holmgren A, et al. NMR structure of Escherichia coli, glutaredoxin 3-glutathione mixed disulfide complex:Implications for the enzymatic mechanism[J]. Journal of Molecular Biology, 1999, 286(2):541-552.
    Wei W, Wang J, Zhou L, et al. CNT enhanced sulfur composite cathode material for high rate lithium battery[J]. Electrochemistry Communications, 2011, 13(5):399-402.
    Li Y, Fan J, Zhang J, et al. A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries[J]. ACS nano, 2017, 11(11):11417-11424.
    Yu M, Ma J, Song H, et al. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(4):1495-1503.
    Zhao M Q, Zhang Q, Huang J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries.[J]. Nature Communications, 2014, 5(5):3410-3418.
    HWANG, Jang-Yeon, et al. High-energy, high-rate, lithium-sulfur batteries:synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer[J]. Advanced Energy Materials, 2016, 6(1):1501480-1501487.
    Tang X N, Sun Z H, Zhou S P, et al. Nitrogen-doped CMK-3@graphene hybrids as a sulfur host material for use in lithium-sulfur batteries[J]. New Carbon Materials, 2017, 32(6):535-541.
    Salem H A, Babu G, Rao C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. Journal of the American Chemical Society, 2015, 137(36):11542-11545.
    Yuan Z, Peng H, Huang J, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2015, 24(39):6105-6112.
    Cramer C N, Haselmann K F, Olsen J V, et al. Disulfide linkage characterization of disulfide bond-containing proteins and peptides by reducing electrochemistry and mass spectrometry[J]. Analytical Chemistry, 2015, 88(3):26-36.
    Cleland W W. Dithiothreitol, A new protective reagent for sh groups[J]. Biochemistry, 1964, 3(4):480.
    Hang Tao. Electrochemical impedance spectroscopy analysis for lithium-ion battery using Li4 Ti5O12anode[J]. Journal of Power Sources, 2013, 222:442-447.
    Li Y, Zhan H, Liu S, et al. Electrochemical properties of the soluble reduction products in rechargeable Li/S battery[J]. Journal of Power Sources, 2010, 195(9):2945-2949.
  • 加载中
图(1)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  96
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2018-03-02
  • 修回日期:  2019-07-30
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回