留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中孔炭微球/MoS2/S复合正极材料的制备及其电化学性能

陶颖卿 孔振凯 魏艳菊 王际童 乔文明 凌立成

陶颖卿, 孔振凯, 魏艳菊, 王际童, 乔文明, 凌立成. 中孔炭微球/MoS2/S复合正极材料的制备及其电化学性能. 新型炭材料, 2019, 34(4): 349-357.
引用本文: 陶颖卿, 孔振凯, 魏艳菊, 王际童, 乔文明, 凌立成. 中孔炭微球/MoS2/S复合正极材料的制备及其电化学性能. 新型炭材料, 2019, 34(4): 349-357.
TAO Ying-qing, KONG Zhen-kai, WEI Yan-ju, WANG Ji-tong, QIAO Wen-ming, LING Li-cheng. Synthesis and electrochemical performance of S/mesoporous carbon microsphere-MoS2 cathode materials. New Carbon Mater., 2019, 34(4): 349-357.
Citation: TAO Ying-qing, KONG Zhen-kai, WEI Yan-ju, WANG Ji-tong, QIAO Wen-ming, LING Li-cheng. Synthesis and electrochemical performance of S/mesoporous carbon microsphere-MoS2 cathode materials. New Carbon Mater., 2019, 34(4): 349-357.

中孔炭微球/MoS2/S复合正极材料的制备及其电化学性能

基金项目: 国家自然科学基金(U1710252,21506061);中央高校基本科研业务费专项(50321041917001).
详细信息
    作者简介:

    陶颖卿,硕士研究生.E-mail:taoyingqing163@163.com

    通讯作者:

    乔文明,博士,教授.E-mail:qiaowm@ecust.edu.cn

  • 中图分类号: TB33

Synthesis and electrochemical performance of S/mesoporous carbon microsphere-MoS2 cathode materials

Funds: National Natural Science Foundation of China (U1710252, 21506061); Fundamental Research Funds for the Central Universities (50321041917001).
  • 摘要: 目前锂硫电池的应用仍受活性物质硫和放电产物的绝缘性、中间产物聚硫化物的穿梭以及硫正极在循环过程中较大的体积变化等问题限制。本文以导电中孔炭微球(MCM)为载体材料,将极性的MoS2均匀地负载于MCM框架中,作为高效的硫正极载体材料。结果表明,与MCM/S正极相比,添加了MoS2的MCM/MoS2/S复合正极表现出更高的容量、更好的循环稳定性和倍率性能,其中添加12.4 wt.%的MoS2表现最优异的电化学性能。此外,MoS2在硫正极的工作电压窗口内具有电化学活性,可以提供附加容量,且能在醚系电解液中保持稳定的放电容量。当用MoS2替代部分非电化学活性的载体时,可以提高硫正极的整体容量。这种利用电化学活性的载体提高电极整体容量的思路为进一步提高硫正极的电化学性能提供了参考。
  • Bruce P, Freunberger S, Hardwick L, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1):19-29.
    Manthiram A, Chung S, Zu C. Lithium-sulfur batteries:Progress and prospects[J]. Advanced Materials, 2015, 27(12):1980-2006.
    Seh Z, Sun Y, Zhang Q, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20):5605-5634.
    Manthiram A, Fu Y, Chung S, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23):11751-11787.
    徐朝, 游慧慧, 张磊, 等. 多硫化物阻隔层在锂硫电池中的应用研究进展[J]. 新型炭材料, 2017, 32(2):97-105. (Xu Z, You H, Zhang L, et al. Recent development of polysulfide barriers for Li-S batteries[J]. New Carbon Mateials, 2017, 32(2):97-105.)
    Su Y, Manthiram A. Sulfur/lithium-insertion compound composite cathodes for Li-S batteries[J]. Journal of Power Sources, 2014, 270:101-105.
    Ma L, Wei S, Zhuang H, et al. Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur[J]. Journal of Materials Chemistry A, 2015, 3(39):19857-19866.
    Zhou J, Wang Y, Wang J, et al. Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres[J]. Journal of Colloid and Interface Science, 2016, 462:200-207.
    Sun F, Wei Y, Chen J, et al. Melamine-assisted one-pot synthesis of hierarchical nitrogen-doped carbon@MoS2 nanowalled core-shell microspheres and their enhanced Li-storage performances[J]. Nanoscale, 2015, 7(30):13043-13050.
    Schuster J, He G, Nazar F, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 124, 3651-3655.
    Sun F, Wang J, Long D, et al. A high-rate lithium-sulfur battery assisted by nitrogen-enriched mesoporous carbon decorated with ultrafine La2O3 nanoparticles[J]. Journal of Materials Chemistry A, 2013, 1, 13283.
    Sun W, Ou XG, Sun K, et al. A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries[J]. Electrochimica Acta, 2016, 207, 198-206.
    Qu Q, Gao T, Shao J, et al. Strong surface-bound sulfur in conductive MoO2 matrix for enhancing Li-S batteries performance[J]. Advanced Materials Interfaces, 2015, 2, 1500048.
    Jayaprakash N, Shen J, Moganty S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2011, 123(26):6026-6030.
    Li Z, Jiang Y, Yuan L, et al. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano, 2014, 8(9):9295-9303.
    Ahn W, Seo M, Jun Y, et al. Sulfur nanogranular film-coated three-dimensional graphene sponge-based high power lithium sulfur battery[J]. ACS Applied Materials & Interfaces, 2016, 8(3):1984-1991.
    Zhang Q, Wang Y, Seh Z, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters, 2015, 15(6):3780-3786.
    Qu Q, Gao T, Zheng H, et al. Strong surface-bound sulfur in conductive MoO2 matrix for enhancing Li-S battery performance[J]. Advanced Materials Interfaces, 2015, 2:1500048.
    Wang H, Tsai C, Cui Y, et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution[J]. Nano Research, 2015, 8(2):566-575.
    Chhowalla M, Shin H, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4):263-275.
  • 加载中
图(1)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  107
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-03
  • 录用日期:  2019-09-10
  • 修回日期:  2019-07-28
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回