留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Pickering乳液的石墨烯纳米带气凝胶制备及性能

胡晓静 赵宗彬 刘洋 张涵 梁菁菁 邱介山

胡晓静, 赵宗彬, 刘洋, 张涵, 梁菁菁, 邱介山. 基于Pickering乳液的石墨烯纳米带气凝胶制备及性能. 新型炭材料, 2019, 34(4): 358-366.
引用本文: 胡晓静, 赵宗彬, 刘洋, 张涵, 梁菁菁, 邱介山. 基于Pickering乳液的石墨烯纳米带气凝胶制备及性能. 新型炭材料, 2019, 34(4): 358-366.
HU Xiao-jing, ZHAO Zong-bin, LIU Yang, ZHAN Han, LIANG Jing-jing, QIU Jie-shan. Fabrication and properties of graphene nanoribbon aerogels using Pickering emulsions as the template. New Carbon Mater., 2019, 34(4): 358-366.
Citation: HU Xiao-jing, ZHAO Zong-bin, LIU Yang, ZHAN Han, LIANG Jing-jing, QIU Jie-shan. Fabrication and properties of graphene nanoribbon aerogels using Pickering emulsions as the template. New Carbon Mater., 2019, 34(4): 358-366.

基于Pickering乳液的石墨烯纳米带气凝胶制备及性能

基金项目: 国家自然科学基金(51672033,U1610255,U1610105).
详细信息
    作者简介:

    胡晓静,硕士研究生.E-mail:sunnyhxj@mail.dlut.edu.cn

    通讯作者:

    赵宗彬,教授.E-mail:zbzhao@dlut.edu.cn;邱介山,教授.E-mail:jqiu@dlut.edu.cn

  • 中图分类号: TQ127.1+1

Fabrication and properties of graphene nanoribbon aerogels using Pickering emulsions as the template

Funds: National Natural Science Foundation of China (51672033, U1610255, U1610105).
  • 摘要: 采用纳米碳管液相氧化开壁技术制备氧化石墨烯纳米带,以氧化石墨烯纳米带为前驱体,Pickering乳液为模板,聚醚胺(D400)为助剂和交联剂,制备孔径均匀可控的石墨烯纳米带气凝胶。采用光学显微镜、电子显微镜对乳液的形貌、粒径及气凝胶微观结构进行表征,研究乳液模板对石墨烯纳米带气凝胶结构和性质的影响。结果表明,在乳液水油比为7∶1时,所得气凝胶具有均匀的孔结构、优异的可压缩性能,在应变50%的情况下,压缩1 000次后仍能恢复。当应变增大到95%时,循环50次依然能恢复原状。该气凝胶具有良好的压阻特性,气凝胶的电阻与形变之间有良好的线性对应关系,且与压缩速率无关。
  • Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18):2554-2560.
    Chabot V, Higgins D, Yu A, et al. A review of graphene and graphene oxide sponge:material synthesis and applications to energy and the environment[J]. Energy & Environmental Science, 2014, 7(5):1564-1596.
    Shao X, Pan F, Zheng L,et al. Nd-doped TiO2-C hybrid aerogels and their photocatalytic properties[J]. New Carbon Materials, 2018, 33(2):116-124.
    Hu H, Zhao Z, Wan W, et al. Polymer/graphene hybrid aerogel with high compressibility, conductivity, and "sticky" superhydrophobicity[J]. ACS Applied Materials & Interfaces, 2014, 6(5):3242-3249.
    Liu Y Z, Li Y F, Yuan S X, et al. Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions[J]. ChemElectroChem, 2018, 5:3506-3513.
    张丽芳, 魏伟, 杨全红,等. 石墨烯基宏观体:制备、性质及潜在应用[J]. 新型炭材料, 2013, 28(3):161-171. (ZHANG Li-fang, WEI Wei, YANG Quan-hong, et al. Graphene-based Macroform:Preparation, Properties and Applications[J]. New Carbon Materials, 2013, 28(3):161-171.)
    Samad Y A, Li Y, Alhassan S M, et al. Novel graphene foam composite with adjustable sensitivity for sensor applications[J]. ACS Applied Materials & Interfaces, 2015, 7(17):9195-9202.
    Qin Y, Peng Q, Ding Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano, 2015, 9(9):8933-8941.
    Yarjan Abdul S, Yuanqing L, Andreas S, et al. Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications[J]. Small, 2015, 11(20):2380-2385.
    Chen P, Yang J J, Li S S, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2013, 2(2):249-256.
    张旭, 周颖, 邱介山,等. 氢卤酸诱导石墨烯气凝胶组装体的制备[J]. 新型炭材料, 2016, 31(4):407-414. (ZHAN Xu, ZHOU Ying, QIU Jie-shan, et al. Hydrogen Halide-promoted Construction of 3D Graphene Aerogels[J]. New Carbon Materials, 2016, 31(4):407-414.)
    李晨, 张熊, 马衍伟, 等. 三维石墨烯网络在超级电容器中的应用[J]. 新型炭材料, 2015, 30(3):193-206. (LI Chen, ZHANG Xiong, MA Yan-wei, et al. Three Dimensional Graphene Networks for Supercapacitor Electrode Materials[J]. New Carbon Materials, 2015,30(3):193-206.)
    Chen L, Du R, Zhu J, et al. Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction[J]. Small, 2015, 11(12):1423-1429.
    Gong Y, Fei H, Zou X, et al. Boron- and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction[J]. Chemistry of Materials, 2015, 27(4):1181-1186.
    王旭珍, 刘宁, 邱介山, 等. 3D二硫化钼/石墨烯组装体的制备及其催化脱硫性能[J]. 新型炭材料, 2014, 29(2):81-88. (WANG Xu-zhen, LIU Ning, QIU Jie-shan, et al. Fabrication of Three-dimensional MoS2-graphene Hybrid Monoliths and Their catalytic Performance for Hydrodesulfurization[J]. New Carbon Materials, 2014, 29(2):81-88.)
    Zhang J, Yu M, Li S, et al. Transparent conducting oxide-free nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite paper as flexible counter electrodes for dye-sensitized solar cells[J]. Journal of Power Sources, 2016, 334:44-51.
    Zhou G. A graphene foam electrode with high sulfur loading for flexible and high-energy li-S batteries[J]. Nano Energy, 2015, 11:356-365.
    Terrones M, Botello-Méndez A R, Campos-Delgado J, et al. Graphene and graphite nanoribbons:Morphology, properties, synthesis, defects and applications[J]. Nano Today, 2010, 5(4):351-372.
    Chen L, Du R, Zhu J, et al. Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction[J]. Small, 2015, 11(12):1423-1429.
    Liu Y, Wang X, Wan W, et al. Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture[J]. Nanoscale, 2016, 8(4):2159-2167.
    Wang C, He X, Li Y, et al. Multifunctional graphene sheet-nanoribbon hybrid aerogels[J]. Journal of Materials Chemistry A, 2014, 2(36):14994-15000.
    Peng Q, Li Y, He X, et al. Graphene nanoribbon aerogels unzipped from carbon nanotube sponges[J]. Advanced Materials, 2014, 26(20):3241-3247.
    Ramsden W. Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation) preliminary account[J]. Proceedings of the Royal Society of London, 1903, 72(4):156-164.
    Pickering S U. CXCVI.-emulsions[J]. Journal of the Chemical Society, Transactions, 1907, 91:2001-2021.
    Wu J, Ma G H. Recent studies of pickering emulsions:Particles make the difference[J]. Small, 2016, 12(34):4582-4582.
    Destribats M, Faure B, Birot M, et al. Tailored silica macrocellular foams:Combining limited coalescence-based Pickering emulsion and sol-gel process[J]. Advanced Functional Materials, 2012, 22(12):2642-2654.
    Vílchez A, Rodríguez-Abreu C, Esquena J, et al. Macroporous polymers obtained in highly concentrated emulsions stabilized solely with magnetic nanoparticles[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2011, 27(21):13342-13352.
    Guo P, Song H, Chen X. Hollow graphene oxide spheres self-assembled by W/O emulsion[J]. Journal of Materials Chemistry, 2010, 20(23):4867-4874.
    Duncan B, Landis R F, Jerri H A, et al. Nanocomposites:Hybrid organic-inorganic colloidal composite 'sponges' via internal crosslinking[J]. Small, 2015, 11(11):1302-1309.
    Cervin N T, Johansson E, Larsson P A, et al. Strong, water-durable, and wet-resilient cellulose nanofibril-stabilized foams from oven drying[J]. ACS Applied Materials & Interfaces, 2016, 8(18):11682-11689.
    Chen T, Colver P, Bon S. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization[J]. Advanced Materials, 2010, 19(17):2286-2289.
  • 加载中
图(1)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  63
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-25
  • 录用日期:  2019-09-10
  • 修回日期:  2019-07-27
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回