留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯-锰氧化物复合物的制备及对铀的吸附性能

杨爱丽 朱玉宽 李萍 杨鹏

杨爱丽, 朱玉宽, 李萍, 杨鹏. 氧化石墨烯-锰氧化物复合物的制备及对铀的吸附性能. 新型炭材料, 2019, 34(5): 441-446.
引用本文: 杨爱丽, 朱玉宽, 李萍, 杨鹏. 氧化石墨烯-锰氧化物复合物的制备及对铀的吸附性能. 新型炭材料, 2019, 34(5): 441-446.
YANG Ai-li, ZHU Yu-kuan, LI Ping, YANG Peng. Preparation and adsorption performance of a graphene oxide- manganese oxide hybrid for uranium removal. New Carbon Mater., 2019, 34(5): 441-446.
Citation: YANG Ai-li, ZHU Yu-kuan, LI Ping, YANG Peng. Preparation and adsorption performance of a graphene oxide- manganese oxide hybrid for uranium removal. New Carbon Mater., 2019, 34(5): 441-446.

氧化石墨烯-锰氧化物复合物的制备及对铀的吸附性能

基金项目: 国家自然科学基金项目(21407132).
详细信息
    通讯作者:

    杨爱丽,副研究员.E-mail:yang770117@sina.com

  • 中图分类号: TB33

Preparation and adsorption performance of a graphene oxide- manganese oxide hybrid for uranium removal

Funds: National Natural Science Foundation of China (21407132).
  • 摘要: 为了改进吸附性能和后处理过程中固液分离的简便性,采用改进的Hummers法合成氧化石墨烯(GO),再通过超声法将其与锰氧化物(MnxOy)进行复合获得复合型吸附剂GOMO,并用红外光谱仪(FTIR)、拉曼(raman)光谱、扫描电子显微镜(SEM)及光电子能谱(XPS)对产物结构和形貌进行表征。考察溶液pH值、离子强度、吸附时间和铀溶液初始浓度对GOMO吸附行为的影响,同时对吸附机理进行初步探索。结果表明,GOMO对铀具有很好的吸附性能,溶液吸附效果有显著的影响。对于初始浓度为10 mg/L的含铀溶液,二者均可在短时间内达到近100%的去除率,吸附量分别为75.46 mg/g和143.34 mg/g。GOMO对铀的吸附过程符合Langmuir模型和准二级动力学模型。在核废液处理的实际应用中,GOMO对铀的去除效果明显优于GO。
  • Yang A L, Yang P, Huang C P. Effect of Mg(II) on the removal of uranium from low radioactive wastewater by flocculation using polyacrylamide[J]. J Hazard Toxic Radioact Waste, 2017, 21(4): 04017006.
    Zhang C, Dodge C J, Malhotra S V, et al. Bioreduction and precipitation of uranium in ionic liquid aqueous solution by Clostridium sp.[J]. Bioresour Technol, 2013, 136: 752-756.
    Shen J, Schafer A. Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review[J]. Chemosphere, 2014, 117: 679-691.
    Sreenivas T, Rajan K C. Studies on the separation of dissolved uranium from alkaline carbonate leach slurries by resin-in-pulp process[J]. Separ Purif Technol, 2013, 112: 54-60.
    Beltrami D, Chagnes A, Haddad M, et al. Development of new cationic exchangers for the recovery of uranium(VI) from concentrated phosphoric acid[J]. Separ Sci Technol, 2013, 48: 480-486.
    Tan L, Wang J, Liu Q, et al.Facile preparation of oxine functionalized magnetic Fe3O4 particles for enhanced uranium(VI) adsorption[J]. Colloids Surf A: Physicochem Eng Aspects, 2015, 466(12): 85-91.
    Lingamdinne L P, Choi Y L, Kim I S, et al.Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides[J]. J Hazard Mater, 2017, 326: 145-156.
    Decker J D, Folens K, Clercq J D, et al.Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption[J]. J Hazard Mater, 2017, 335: 1-9.
    徐德芳,宋燕,田晓东,等. 纳米MnO2/膨胀石墨复合材料的制备及其电化学性能[J]. 新型炭材料,2016,31(6): 615-620. (Xu D F, Song Y, Tian X D, et al. Preparation and electrochemical properties of nanostructured MnO2/exfoliated graphite composites[J]. New Carbon Mater, 2016, 31(6): 615-620.)
    Zhang H, Gu L, Zhang L, et al.Removal of aqueous Pb(II) by adsorption on Al2O3-pillared layered MnO2[J]. Appl Surf Sci, 2017, 406: 330-338.
    Xu H M, Qu Z, Zong C X, et al.Mn-based perovskite oxides for Hg0 adsorption and regeneration via a temperature swing adsorption (TSA) process[J]. Fuel,2016,182: 428-436.
    Zhang L, Wei J, Zhao X, et al.Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonite[J]. Chem Eng J, 2016, 302: 733-743.
    Pan N, Li L, Ding J, et al.Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI)[J]. J Hazard Mater, 2016, 309: 107-115.
    Gao Q,Wu S S,Lü S L,et al. Improvement of particles distribution of in-situ 5 vol% TiB2 particulates reinforced Al-4.5Cu alloy matrix composites with ultrasonic vibration treatment[J]. J Alloy Comp, 2017, 692: 1-9.
    Ma J, Liu C, Li R, et al. Properties and structural characterization of oxide starch/chitosan/graphene oxide biodegradable nanocomposites[J]. J Appl Polym Sci, 2012, 123(5): 2933-2944.
    Chen S, Hong J, Yang H, et al.Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite[J]. J Environ Radioact, 2013, 126(4): 253-258.
    Sun Y B, Ding C C, Cheng W C, et al. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. J Hazard Mater, 2014, 280: 399-408.
    Yang A L, Huang C P, Wei B Q, et al. Facile decolorization of methylene blue with flower-like manganese wads[J]. Water Sci Technol, 2014, 69: 1094-1100.
    Sun Y B, Yang S T, Sheng G D, et al. The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes[J]. J Environ Radioact, 2012, 105(2): 40-47.
    Niu Z W, Fan Q H, Wang W H, et al. Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite[J]. Appl Radiat Isot, 2009, 67: 1582-1590.
    Yu H W, Yang S S, Ruan H M, et al. Recovery of uranium ions from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite[J]. Appl Clay Sci, 2015, 111: 67-75.
    Lagergren S.Zur theorie der sogenannten adsorption gelöster stoffe[J]. Kungliga Sevenska Vetensk Handl, 1898, 24: 1-39.
    Ho Y, McKay G.Pseudo-second order model for sorption processes[J]. Process Biochem, 1999, 34: 451-465.
    Liu W, Zhao X, Wang T, et al. Adsorption of U(VI) by multilayer titanate nanotubes: Effects of inorganic cations, carbonate and natural organic matter[J]. Chem Eng J, 2016, 286: 427-435.
  • 加载中
图(1)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  154
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-19
  • 录用日期:  2019-11-04
  • 修回日期:  2019-09-30
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回