留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温煤沥青中间相热转化行为

杨桃 刘犇 宋燕 马兆昆 宋怀河 刘占军

杨桃, 刘犇, 宋燕, 马兆昆, 宋怀河, 刘占军. 高温煤沥青中间相热转化行为. 新型炭材料, 2019, 34(6): 546-551.
引用本文: 杨桃, 刘犇, 宋燕, 马兆昆, 宋怀河, 刘占军. 高温煤沥青中间相热转化行为. 新型炭材料, 2019, 34(6): 546-551.
YANG Tao, LIU Ben, SONG Yan, MA Zhao-kun, SONG Huai-he, LIU Zhan-jun. Formation and transformation behavior of mesophase from three high softening-point pitches. New Carbon Mater., 2019, 34(6): 546-551.
Citation: YANG Tao, LIU Ben, SONG Yan, MA Zhao-kun, SONG Huai-he, LIU Zhan-jun. Formation and transformation behavior of mesophase from three high softening-point pitches. New Carbon Mater., 2019, 34(6): 546-551.

高温煤沥青中间相热转化行为

基金项目: NSFC-山西煤基低碳联合基金(U1610252).
详细信息
    作者简介:

    杨桃,博士研究生.E-mail:taomung@126.com

    通讯作者:

    宋燕,研究员.E-mail:yansong1026@126.com

  • 中图分类号: TQ127.1+1

Formation and transformation behavior of mesophase from three high softening-point pitches

Funds: National Natural Science Foundation of China (U1610252).
  • 摘要: 沥青的组成结构直接决定其中间相形成和热转化行为。本文对3种高温煤沥青的组成和分子结构对中间相热转化的影响进行了研究。利用傅里叶红外光谱仪与X-射线衍射分析仪对煤沥青的分子结构进行分析,并采用带有热台的偏光显微镜原位观察煤沥青的中间相热转化行为。通过原位观察发现,不同高温煤沥青在相同条件下的中间相热转化行为并不完全相同,与其内部组成和结构相关。喹啉不溶物含量较高的煤沥青基炭微球成核速率显著高于生长速率,而芳香度较高的分子片层利于炭微球的生长与融并,从而形成体形中间相。
  • 王成杨. 碳质中间相理论与应用[M]. 北京:科学出版社, 2015. (Wang C Y. Theory and Application of Carbon Mesophase[M]. Beijing:Science Press, 2015.)
    杨辉,梁朋,宋怀河,等. 煤加氢液化残渣制备中间相沥青的研究[J]. 炭素技术, 2014, 33:26-30. (Yang H, Liang P, Song H H, et al. Preparation of mesophase pitch from coal hydroliquefaction residue[J]. Carbon Techniques, 2014, 33:26-30.)
    钱树安,李春锋,周国英. 炭化原料的组成结构和中间相组织形态之间的关系[J]. 燃料化学学报, 1983, 4:348-358. (Qian S A, Li C F, Zhou G Y. The relationship between the composition and molecular structure of carbonizing feedstocks and mesophase textures formed in pyrolysis[J]. Journal of Fuel Chemistry and Technology, 1983, 4:348-358.)
    Xu G Y, Yan Q, Yu H F, et al. Tracking and analyzing the structures and morphologies of mesocarbon microbeads (Mcmbs) in air oxidation process[J]. Polymer Bulletin, 2016, 73:3175-3182.
    Zhu Y M, Zhao X F, Gao L J, et al. Properties and micro-morphology of primary quinoline insoluble and mesocarbon microbeads[J]. Journal of Materials Science, 2016, 51:8098-8107.
    Parsa M R, Chaffee A L. The effect of densification with naoh on brown coal thermal oxidation behaviour and structure[J]. Fuel, 2018, 216:548-558.
    Xie X, Zhao Y, Qiu P, et al. Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks[J]. Fuel, 2018, 216:521-530.
    Li K, Khanna R, Zhang J, et al. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques[J]. Energy & Fuels, 2015, 29:7178-7189.
    Dun W, Guijian L, Ruoyu S, et al. Investigation of structural characteristics of thermally metamorphosed coal by ftir spectroscopy and X-ray diffraction[J]. Energy & Fuels, 2013, 27:5823-5830.
    李同起,王成扬. 碳质中间相形成机理研究[J]. 新型炭材料, 2005, 20:278-285. (Li T Q, Wang C Y. The formation mechanism of carbonaceous mesophase[J]. New Carbon Materials, 2005, 20:278-285.)
  • 加载中
计量
  • 文章访问数:  487
  • HTML全文浏览量:  202
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-20
  • 录用日期:  2020-01-03
  • 修回日期:  2019-11-30
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回