留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au@石墨烯量子点复合材料的制备及表面增强拉曼散射应用

王玲 张艳 张婧 周健 周雪皎

王玲, 张艳, 张婧, 周健, 周雪皎. Au@石墨烯量子点复合材料的制备及表面增强拉曼散射应用. 新型炭材料, 2019, 34(6): 606-610.
引用本文: 王玲, 张艳, 张婧, 周健, 周雪皎. Au@石墨烯量子点复合材料的制备及表面增强拉曼散射应用. 新型炭材料, 2019, 34(6): 606-610.
WANG Ling, ZHANG Yan, ZHANG Jing, ZHOU Jian, ZHOU Xue-jiao. Preparation of an Au nanoparticle-graphene oxide quantum dot hybrid and its use in surface-enhanced Raman scattering. New Carbon Mater., 2019, 34(6): 606-610.
Citation: WANG Ling, ZHANG Yan, ZHANG Jing, ZHOU Jian, ZHOU Xue-jiao. Preparation of an Au nanoparticle-graphene oxide quantum dot hybrid and its use in surface-enhanced Raman scattering. New Carbon Mater., 2019, 34(6): 606-610.

Au@石墨烯量子点复合材料的制备及表面增强拉曼散射应用

基金项目: 国家自然科学基金(51602192,51502231);上海工程技术大学研究生科研创新项目(17KY0510).
详细信息
    作者简介:

    王玲,硕士研究生.E-mail:lingwangwz@163.com

    通讯作者:

    张艳,博士,副教授.E-mail:yanzhang@sues.edu.cn;周雪皎,博士,讲师.E-mail:xjzhou@xidian.edu.cn

  • 中图分类号: TB33

Preparation of an Au nanoparticle-graphene oxide quantum dot hybrid and its use in surface-enhanced Raman scattering

Funds: National Natural Science Foundation of China(51602192,51502231); Shanghai University of Engineering Science Graduate Research Innovation Project(17KY0510).
  • 摘要: 以柠檬酸钠为还原剂,采用原位化学还原法制备了Au@石墨烯量子点复合材料。对材料进行了扫描电镜、透射电子显微镜、能谱仪、紫外可见光吸收光谱仪、X射线光电子能谱仪以及拉曼光谱仪等表征。结果表明,复合材料相比于氧化石墨烯量子点的IG/ID值增加,说明其石墨化程度有所提高。将复合材料应用到表面增强拉曼散射(SERS)中检测罗丹明6G(R6G),复合基底的SERS强度为Au纳米基底的9倍,是氧化石墨烯量子点基底SERS强度的12倍,表明Au@石墨烯量子点复合材料在SERS检测中具有潜在应用。
  • Shan B B, Pu Y H, Chen Y F, et al. Novel SERS labels:Rational design, functional integration and biomedical applications[J]. Coordin Chem Rev, 2018, 371:11-37.
    Huang C C, Isidoro C. Raman spectrometric detection methods for early and non-invasive diagnosis of alzheimer's disease[J]. J Alzeimers Dis, 2017, 57(4):1145-1156.
    Hao J M, Meng X G. Recent advances in SERS detection of perchlorate[J]. Front Chem Sci Eng, 2017, 11(3):1-17.
    Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annu Rev Phys Chem, 2007, 58(1):267-297.
    Singh J P, Chu H Y, Abell J, et al. Flexible and mechanical strain resistant large area SERS active substrates[J]. Nanoscale, 2012, 4(11):3410-3414.
    Yang L B, Chen Y L, Shen Y, et al. SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol a residues in milk[J]. Talanta, 2018, 179(9):37-42.
    Kim K J, Kim H C, Park M, et al. Facile preparation of SERS and catalytically active Au nanostructures using furfuryl derivatives[J]. Appl Surf Sci, 2017, 414:325-334.
    Wang S H, Niu H Y, Cai Y Q, et al. Multifunctional Au NPs-polydopamine-polyvinylidene fluoride membrane chips as probe for enrichment and rapid detection of organic contaminants[J]. Talanta, 2018, 181:340-345.
    Zheng X L, Peng Y, Yang Y S, et al. Hydrothermal reduction of graphene oxide:effect on surface-enhanced raman scattering[J]. J Raman Spectrosc, 2017, 48(1):97-103.
    Yan T T, Zhang L L, Jiang T T, et al. Controllable SERS performance for the flexible paper-like films of reduced graphene oxide[J]. Appl Surf Sci, 2017, 419:373-381.
    Wang L,Zhang Y,Yang Y Q,et al. Strong dependence of surface enhanced raman scattering on structure of graphene oxide film[J]. Materials, 2018, 11(7):1199.
    Zhou X J, Zhang Y, Wang C, et al. Photo-fenton reaction of graphene oxide:a new strategy to prepare graphene quantum dots for DNA cleavage[J]. ACS Nano, 2012, 6(8):6592-6599.
    Zhang Y, Wu C Y, Zhou X J, et al. Graphene quantum dots/gold electrode and its application in living cell H2O2 detection[J]. Nanoscale, 2013, 5(5):1816-1819.
    Zhang J L, Yang H J, Shen G X, et al. Reduction of graphene oxide via L-ascorbic acid[J]. Chem Commun, 2010, 46(7):1112-1114.
    Lystvet S M, Volden S, Singh G, et al. Tunable photophysical properties, conformation and function of nanosized protein-gold constructs[J]. RSC Advances, 2013, 3(2):482-495.
    Wang W S, He D W, Duan J H, et al. Simple synthesis method of reduced graphene oxide/gold nanoparticle and its application in surface-enhanced raman scattering[J]. Chem Phys Lett, 2013, 582(17):119-122.
    Hai X, Lin X, Chen X W, et al. Highly selective and sensitive detection of cysteine with a graphene quantum dots-gold nanoparticles based core-shell nanosensor[J]. Sensor Actuat B-Chem, 2018, 257:228-236.
    Wang R Y, Wu Z W, Wang G F, et al. Highly active Au-Pd nanoparticles supported on three-dimensional graphene-carbon nanotube hybrid for selective oxidation of methanol to methyl formate[J]. Rsc Advances, 2015, 5(56):44835-44839.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
    Michaels A M, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced raman scattering of single rhodamine 6G molecules[J]. J Phys Chem B, 2000, 104(50):11965-11971.
    Watanabe H, Hayazawa N, Inouye Y, et al. DFT vibrational calculations of rhodamine 6G adsorbed on silver:analysis of tip-enhanced raman spectroscopy[J]. J Phys Chem B, 2005, 109(11):5012-5020.
  • 加载中
计量
  • 文章访问数:  409
  • HTML全文浏览量:  150
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 录用日期:  2020-01-03
  • 修回日期:  2019-11-29
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回