留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硝酸热处理对NiCo2S4/炭布复合电极材料电化学性能的影响

徐晓彤 田晓冬 李肖 杨桃 贺怡婷 宋燕 刘占军

徐晓彤, 田晓冬, 李肖, 杨桃, 贺怡婷, 宋燕, 刘占军. 硝酸热处理对NiCo2S4/炭布复合电极材料电化学性能的影响. 新型炭材料, 2020, 35(3): 244-252.
引用本文: 徐晓彤, 田晓冬, 李肖, 杨桃, 贺怡婷, 宋燕, 刘占军. 硝酸热处理对NiCo2S4/炭布复合电极材料电化学性能的影响. 新型炭材料, 2020, 35(3): 244-252.
XU Xiao-tong, TIAN Xiao-dong, LI Xiao, YANG Tao, HE Yi-ting, SONG Yan, LIU Zhan-jun. The effect of the nitric acid heat treatment time on the electrochemical properties of NiCo2S4/carbon cloth composites as supercapacitor electrode materials. New Carbon Mater., 2020, 35(3): 244-252.
Citation: XU Xiao-tong, TIAN Xiao-dong, LI Xiao, YANG Tao, HE Yi-ting, SONG Yan, LIU Zhan-jun. The effect of the nitric acid heat treatment time on the electrochemical properties of NiCo2S4/carbon cloth composites as supercapacitor electrode materials. New Carbon Mater., 2020, 35(3): 244-252.

硝酸热处理对NiCo2S4/炭布复合电极材料电化学性能的影响

基金项目: 国家基金委-山西省煤基低碳联合基金(U1610119,U1610252);山西省重点研发计划重点项目(201603D112007);中国科学院青年促进会资助(118800QCH1);山西省自然科学基金(201801D221371).
详细信息
    作者简介:

    徐晓彤,硕士研究生.E-mail:xuxiaotonglad@163.com

    通讯作者:

    宋燕,研究员.E-mail:yansong1026@126.com

  • 中图分类号: TQ342+.74

The effect of the nitric acid heat treatment time on the electrochemical properties of NiCo2S4/carbon cloth composites as supercapacitor electrode materials

Funds: National Natural Science Foundation of China (U1610119, U1610252), Key Research and Development Program of Shanxi Province (201603D112007), Youth Innovation Promotion Association of the Chinese Academy of Sciences (118800QCH1) and Shanxi Natural Science Foundation (201801D221371).
  • 摘要: 先对炭纤维布(CC)进行不同时间的硝酸热处理,随后采用一步溶剂热方法在炭纤维布上沉积NiCo2S4纳米颗粒。结果表明,随着酸处理时间的延长,炭纤维表面粗糙度增加,含氧量增加。当酸处理时间为12 h时,NiCo2S4在其表面负载最均匀,复合材料的电化学性能最优,在电流密度为1 A g-1时,比容量可达1 298 F g-1,当增大到20 A g-1时,容量仍可保持为原来的89.7%。在5 A g-1电流密度下,循环次数达到3 000次时,容量保持率为95.3%。将所得复合材料作为正极,纳米炭纤维布(CNF)为负极,组装成具有自支撑结构的非对称超级电容器,在功率密度754 W kg-1时,其能量密度可达37.5 Wh kg-1
  • Li L, Wu Z, Yuan S, et al. Advances and challenges for flexible energy storage and conversion devices and systems[J]. Energy Environ Sci, 2014, 7(7):2101-2122.
    Gao Y P, Huang K J. NiCo2S4 materials for supercapacitor applications[J]. Chemistry-an Asian Journal, 2017, 12(16):1969-1984.
    Sahoo M K, Rao G R. Fabrication of NiCo2S4 nanoball embedded nitrogen doped mesoporous carbon on nickel foam as an advanced charge storage material[J]. Electrochimica Acta, 2018, 268:139-149.
    Yu X, Wang M, Gagnoud A, et al. Formation of highly porous NiCo2S4 discs with enhanced pseudocapacitive properties through sequential ion-exchange[J]. Mater Des, 2018, 145:135-143.
    Tang Q, Chen M, Wang L, et al. A novel asymmetric supercapacitors based on binder-free carbon fiber paper@nickel cobaltite nanowires and graphene foam electrodes[J]. Journal of Power Sources, 2015, 273(Supplement C):654-662.
    Sun M, Tie J, Cheng G, et al. In situ growth of burl-like nickel cobalt sulfide on carbon fibers as high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(4):1730-1736.
    Chen W, Xia C, Alshareef H N. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors[J]. Acs Nano, 2014, 8(9):9531-9541.
    Hao L, Shen L, Wang J, et al. Hollow NiCo2S4 nanotube arrays grown on carbon textile as a self-supported electrode for asymmetric supercapacitors[J]. Rsc Advances, 2016, 6(12):9950-9957.
    Wang G M, Wang H Y, Lu X H, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Adv Mater, 2014, 26(17):2676-2682.
    Tian X D, Zhao N, Wang K, et al. Preparation and electrochemical characteristics of electrospun water-soluble resorcinol/phenol-formaldehyde resin-based carbon nanofibers[J]. Rsc Advances, 2015, 5(51):40884-40891.
    Wang W, Liu W, Zeng Y, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Adv Mater, 2015, 27(23):3572-3578.
    Ma C, Wu L, Zheng L, et al. Preparation and capacitive performance of modified carbon black-doped porous carbon nanofibers[J]. Journal of Nanoparticle Research, 2019, 21(2):33
    王禹.活性碳纤维及其复合材料超级电容性能的研究[D].吉林:吉林大学, 2015. (Wang Yu. Study on supercapacitive performance of activated carbon fiber and its composite material[D]. Jilin:Jilin University, 2015.)
    Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochimica Acta, 2017, 247:1060-1071.
    Hao P, Tian J, Sang Y, et al. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability[J]. Nanoscale, 2016, 8(36):16292-16301.
    徐天昊.过渡金属氢氧化物、硫化物纳米复合材料的制备及其电化学性能的研究[D].吉林:吉林大学, 2018. (Xu Tianhao. Preparation of trasition metal hydroxide and sulfide nanocomposite materials and study of their electrochemical performance[D]. Jilin:Jilin University, 2018.)
    Xiao Y, Lei Y, Zheng B, et al. Rapid microwave-assisted fabrication of 3D cauliflower-like NiCo2S4 architectures for asymmetric supercapacitors[J]. Rsc Advances, 2015, 5(28):21604-21613.
    Yin J, Zhang H, Luo J, et al. High-boiling-point solvent synthesis of mesoporous NiCo2S4 with high specific surface area as supercapacitor electrode material[J]. Journal of Materials Science-Materials in Electronics, 2017, 28(2):2093-2099.
    Li Z, Xin Y, Jia H, et al. Rational design of coaxial MWCNT-COOH@NiCo2S4 hybrid for supercapacitors[J]. Journal of Materials Science, 2017, 52(16):9661-9672.
    Zhao Y, He X, Chen R, et al. Hierarchical NiCo2S4@CoMoO4 core-shell heterostructures nanowire arrays as advanced electrodes for flexible all-solid-state asymmetric supercapacitors[J]. Appl Surf Sci, 2018, 453:73-82.
    Zheng Y, Wang X, Zhao W, et al. Phytic acid-assisted synthesis of ultrafine NiCo2S4 nanoparticles immobilized on reduced graphene oxide as high-performance electrode for hybrid supercapacitors[J]. Chemical Engineering Journal, 2018, 333:603-612.
    Lu F, Zhou M, Li W, et al. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance[J]. Nano Energy, 2016, 26:313-323.
    Zhu Y, Wang F, Zhang H, et al. PPy@NiCo2S4 nanosheets anchored on graphite foam with bicontinuous conductive network for high-areal capacitance and high-rate electrodes[J]. Journal of Alloys and Compounds, 2018, 747:276-282.
    Li S, Ge P, Jiang F, et al. The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials:The influences of morphology structure, phase evolution and interface property[J]. Energy Storage Materials, 2019, 16:267-280.
  • 加载中
图(1)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  99
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-04-28
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回