留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

催化剂对炭黑转变为纳米炭微球和碳管的影响

Vijayshankar Asokan Dorte Nørgaard Madsen Pawel Kosinski Velaug Myrseth

Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. 催化剂对炭黑转变为纳米炭微球和碳管的影响. 新型炭材料, 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X
引用本文: Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. 催化剂对炭黑转变为纳米炭微球和碳管的影响. 新型炭材料, 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X
Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts. New Carbon Mater., 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X
Citation: Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts. New Carbon Mater., 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X

催化剂对炭黑转变为纳米炭微球和碳管的影响

doi: 10.1016/S1872-5805(15)60172-X
详细信息
    通讯作者:

    Vijayshankar Asokan.E-mail:vijayshankar.matsci@gmail.com

  • 中图分类号: TQ127.1+1

Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts

  • 摘要: 以二茂铁和二茂镍为催化剂, 采用化学气相沉积法在1000℃下,炭黑 (CB)转变为炭纳米微球和碳管。利用XRD, SEM, TEM, HR-TEM 和 Raman等对样品进行表征。结果表明,二茂铁和二茂镍质量比不同,可得到形貌不同的纳米炭的结构。与单金属催化剂相比,采用双金属催化剂合成的纳米炭结构具有高结晶度。催化剂颗粒填充在碳管内部或包裹在碳管外部,主要取决于催化剂与炭黑的质量比。当炭黑:二茂铁:二茂镍为1:2:2时,得到结晶度高的催化剂包裹多壁纳米炭微球结构。
  • Iijima S. Helical microtubules of graphitic carbon
    [J]. Nature, 1991, 354(6348): 56-58.
    Ehlich R, Biro LP, Hertel IV. Growth of nanotubes by decomposition of C60 on transition metal surfaces
    [J]. Synthetic Metals, 1999, 103(1-3): 2486-2487.
    Nikolaev P, Bronikowski MJ, Bradley RK, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide
    [J]. Chemical Physics Letters, 1999, 313(1-2): 91-97.
    Lee Y T, Kim N S, Park J, et al. Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000℃
    [J]. Chemical Physics Letters, 2003, 372(5-6): 853-859.
    Bell MS, Teo KBK, Lacerda RG, et al. Carbon nanotubes by plasma-enhanced chemical vapor deposition
    [J]. Pure and Applied Chemistry, 2006, 78(6): 1117-1125.
    Kokai F, Nozaki I, Okada T, et al. Efficient growth of multi-walled carbon nanotubes by continuous-wave laser vaporization of graphite containing B4C
    [J]. Carbon, 2011, 49(4): 1173-1181.
    Kishinevsky S, Nikitenko SI, Pickup DM, et al. Catalytic transformation of carbon black to carbon nanotubes
    [J]. Chemistry of Materials, 2002, 14(11): 4498-4501.
    Doherty SP, Chang RPH. Synthesis of multiwalled carbon nanotubes from carbon black
    [J]. Applied Physics Letters, 2002, 81: 2466-2468.
    Buchholz DB, Doherty SP, Chang RPH. Mechanism for the growth of multiwalled carbon-nanotubes from carbon black
    [J]. Carbon, 2003, 41(8): 1625-1634.
    Chen Z-G, Li F, Ren W-C, et al. Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source
    [J]. Nanotechnology, 2006, 1713: 3100-3104.
    Donnet JB, Oulanti H, Le Huu T. Mechanism growth of multiwalled carbon nanotubes on carbon black
    [J]. Diamond and Related Materials, 2008, 17(7-10): 1506-1512.
    Okuno H, Grivei E, Fabry F, Gruenberger TM, et al. Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process
    [J]. Carbon, 2004, 42(12-13): 2543-2549.
    Lian W, Song H, Chen X, et al. The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1 000 ℃ using an iron catalyst
    [J]. Carbon, 2008, 46(3): 525-530.
    Sengupta J, Jacob C. The effect of Fe and Ni catalysts on the growth of multiwalled carbon nanotubes using chemical vapor deposition
    [J]. Journal of Nanoparticle Research, 2010, 12(2): 457-465.
    Zhang C, Li J, Shi C, et al. The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni-Fe alloy catalyst
    [J]. Carbon, 2011, 49(4): 1151-1158.
    Chiang W-H, Sankaran RM. The influence of bimetallic catalyst composition on single-walled carbon nanotube yield
    [J]. Carbon, 2012, 50(3): 1044-1150.
    Tsoufis T, Xidas P, Jankovic L, et al. Catalytic production of carbon nanotubes over Fe-Ni bimetallic catalysts supported on MgO
    [J]. Diamond and Related Materials, 2007, 16(1): 155-160.
    Lv R, Cao A, Kang F, et al. Single-crystalline permalloy nanowires in carbon nanotubes: enhanced encapsulation and magnetization
    [J]. The Journal of Physical Chemistry C, 2007, 111(30): 11475-11479.
    Harris PJF. Carbon Nanotube Science
    [J]. Cambridge University Press, 2009.
    Hiura H, Ebbesen TW, Tanigaki K, et al. Raman studies of carbon nanotubes
    [J]. Chemical Physics Letters, 1993, 202(6): 509-512.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, et al. Studying disorder in graphite-based systems by Raman spectroscopy
    [J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1290.
    Asokan V, Dorte NM, Velaug M, et al. Effect of temperature on the transformation of carbon black into nanotubes
    [J]. Advanced Materials Research, 2014, 875-877: 1565-1571.
    Cheng J, Zou XP, Zhu G, et al. Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties
    [J]. Solid State Communications, 2009, 149(39-40): 1619-1622.
    Ding F, Rosén A, Campbell EEB, et al. Graphitic encapsulation of catalyst particles in carbon nanotube production
    [J]. Journal of Physical Chemistry B, 2006, 110(15): 7666-7670.
    Qian W, Liu T, Wang Z, et al. Effect of adding nickel to iron-alumina catalysts on the morphology of as-grown carbon nanotubes
    [J]. Carbon, 2003, 41(13): 2487-2493.
    Rodriguez NM, Kim MS, Fortin F, et al. Carbon deposition on iron-nickel alloy particles
    [J]. Applied Catalysis A: General, 1997, 148(2): 265-282.
    Jourdain V, Bichara C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition
    [J]. Carbon, 2013, 58: 2-39.
    Kang JL, Li JJ, Du XW, et al. Synthesis and growth mechanism of metal filled carbon nanostructures by CVD using Ni/Y catalyst supported on copper
    [J]. Journal of Alloys and Compounds, 2008, 456(1-2): 290-296.
  • 加载中
计量
  • 文章访问数:  721
  • HTML全文浏览量:  68
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-28
  • 录用日期:  2015-02-13
  • 修回日期:  2015-02-01
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回