留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位自组装石墨烯块体材料:性质、结构及pH依赖自组装行为

王刚 贾丽涛 侯博 李德宝 王俊刚 孙予罕

王刚, 贾丽涛, 侯博, 李德宝, 王俊刚, 孙予罕. 原位自组装石墨烯块体材料:性质、结构及pH依赖自组装行为. 新型炭材料, 2015, 30(1): 30-40. doi: 10.1016/S1872-5805(15)60173-1
引用本文: 王刚, 贾丽涛, 侯博, 李德宝, 王俊刚, 孙予罕. 原位自组装石墨烯块体材料:性质、结构及pH依赖自组装行为. 新型炭材料, 2015, 30(1): 30-40. doi: 10.1016/S1872-5805(15)60173-1
WANG Gang, JIA Li-tao, HOU Bo, LI De-bao, WANG Jun-gang, SUN Yu-han. Self-assembled graphene monoliths: properties, structures and their pH-dependent self-assembly behavior. New Carbon Mater., 2015, 30(1): 30-40. doi: 10.1016/S1872-5805(15)60173-1
Citation: WANG Gang, JIA Li-tao, HOU Bo, LI De-bao, WANG Jun-gang, SUN Yu-han. Self-assembled graphene monoliths: properties, structures and their pH-dependent self-assembly behavior. New Carbon Mater., 2015, 30(1): 30-40. doi: 10.1016/S1872-5805(15)60173-1

原位自组装石墨烯块体材料:性质、结构及pH依赖自组装行为

doi: 10.1016/S1872-5805(15)60173-1
基金项目: 国家自然科学基金(21003149,21076218).
详细信息
    作者简介:

    王刚,博士研究生.E-mail:wanggang@sxicc.ac.cn

    通讯作者:

    孙予罕,研究员.E-mail:yhsun@sxicc.ac.cn;贾丽涛,副研究员.E-mail:jialitao910@163.com

  • 中图分类号: TQ127.1+1

Self-assembled graphene monoliths: properties, structures and their pH-dependent self-assembly behavior

Funds: National Natural Science Foundation of China (21003149, 21076218).
  • 摘要: 通过水热法自组装制备出块体石墨烯水凝胶材料,其具有优异的机械性能和弹性;同时发现在调节水凝胶机械性能方面,控制反应的pH值要比常规的反应时间和反应物的浓度更有效。其次,系统研究了石墨烯水凝胶的结构-性能关系和自组装行为。研究发现,在水热条件下,石墨烯具有pH值依赖自组装行为。其中,石墨烯所含羧酸基团在不同pH值下的电离状态有所不同,进而导致石墨烯自组装行为的差异。将石墨烯独特的组装行为与其分子结构和胶体相互作用相互关联,对于设计新型的、多功能的、良好机械性能的石墨烯结构具有重要指导作用。
  • AK Geim, KS Novoselov. The rise of graphene
    [J]. Nat Mater, 2007, 6: 183-191.
    S Guo, S Dong. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications
    [J]. Chem Soc Rev, 2011, 40: 2644-2672.
    X Dong, X Wang, L Wang, et al. 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing
    [J]. ACS Applied Materials & Interfaces, 2012, 4: 3129-3133.
    XC. Dong, H Xu, XW. Wang, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection
    [J]. Acs Nano, 2012, 6: 3206-3213.
    X Xiao, TE Beechem, MT Brumbach, et al. Lithographically defined three-dimensional graphene structures
    [J]. Acs Nano, 2012, 6: 3573-3579.
    Z Chen, W Ren, L Gao, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
    [J]. Nat Mater, 2011, 10: 424-428.
    MQ Zhao, Q Zhang, JQ Huang, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries
    [J]. Nat Commun, 2014, 5.
    BG Choi, M Yang, WH Hong, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities
    [J]. Acs Nano, 2012, 6: 4020-4028.
    BG Choi, SJ Chang, YB Lee, et al. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries
    [J]. Nanoscale, 2012, 4: 5924-5930.
    CM. Chen, Q Zhang, CH. Huang, et al. Macroporous' bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors
    [J]. Chemical Communications, 2012, 48: 7149-7151.
    G Wang, LT Jia, Y Zhu, et al. Novel preparation of nitrogen-doped graphene in various forms with aqueous ammonia under mild conditions
    [J]. RSC Advances, 2012, 2: 11249-11252.
    Y Xu, K Sheng, C Li, et al. Self-Assembled graphene hydrogel via a one-step hydrothermal process
    [J]. ACS Nano, 2010, 4: 4324-4330.
    W Chen, L Yan. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures
    [J]. Nanoscale, 2011, 3: 3132-3137.
    Z Dong, C Jiang, H Cheng, et al. Facile fabrication of light, flexible and multifunctional graphene fibers
    [J]. Advanced Materials, 2012, 24: 1856-1861.
    C Hu, Y Zhao, H Cheng, et al. Graphene microtubings: controlled fabrication and site-specific functionalization
    [J]. Nano Lett, 2012, 12: 5879-5884.
    Y Zhou, Q Bao, LAL Tang, et al. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties
    [J]. Chemistry of Materials, 2009, 21: 2950-2956.
    C Cheng, D Li. Solvated graphenes: An emerging class of functional soft materials
    [J]. Advanced Materials, 2013, 25: 13-30.
    Y Su, Y Zhang, X Zhuang, et al. Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction
    [J]. Carbon, 2013, 62: 296-301.
    D Yu, L Wei, W Jiang, et al. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction
    [J]. Nanoscale, 2013, 5: 3457-3464.
    H Hu, Z Zhao, W Wan, et al. Ultralight and highly compressible graphene aerogels
    [J]. Advanced Materials, 2013, 25: 2219-2223.
    SH Park, HK Kim, DJ Ahn, et al. Self-assembly of Si entrapped graphene architecture for high-performance Li-ion batteries
    [J]. Electrochemistry Communications, 2013, 34: 117-120.
    W Chen, S Li, C Chen, et al. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel
    [J]. Advanced Materials, 2011, 23: 5679-5683.
    KANG Fei-yu, MA J, LI Bao-haa. Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries
    [J]. New Carbon Materials, 2011, 26: 161-170.
    S Banerjee, RK Das, U Maitra. Supramolecular gels 'in action'
    [J]. Journal of Materials Chemistry, 2009, 19: 6649-6687.
    Dy. Teng, ZM. Wu, XG. Zhang, et al. Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition
    [J]. Polymer, 2010, 51: 639-646.
    G Cheng, V Castelletto, CM Moulton, et al. Hydrogelation and self-assembly of fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy
    [J]. Langmuir, 2010, 26: 4990-4998.
    Z Sui, X Zhang, Y Lei, et al. Easy and green synthesis of reduced graphite oxide-based hydrogels
    [J]. Carbon, 2011, 49: 4314-4321.
    H Bai, KX Sheng, PF Zhang, et al. Graphene oxide/conducting polymer composite hydrogels
    [J]. Journal of Materials Chemistry, 2011, 21: 18653-18658.
    HP Cong, XC Ren, P Wang, et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process
    [J]. ACS Nano, 2012, 6: 2693-2703.
    KH Kim, Y Oh, M.F. Islam. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue
    [J]. Nat Nano, 2012, 7: 562-566.
    H Sun, Z Xu, C Gao. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels
    [J]. Adv Mater, 2013, 25: 2554-2560.
    L Qiu, JZ Liu, SL Chang, et al. Biomimetic superelastic graphene-based cellular monoliths
    [J]. Nat Commun, 2012, 3: 1241.
    H Chen, MB Müller, KJ Gilmore, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper
    [J]. Advanced Materials, 2008, 20: 3557-3561.
    L Zhang, ZP Wang, C Xu, et al. High strength graphene oxide/polyvinyl alcohol composite hydrogels
    [J]. Journal of Materials Chemistry, 2011, 21: 10399-10406.
    L Pan, G Yu, D Zhai, et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity
    [J]. Proc Natl Acad Sci U S A, 2012, 109: 9287-9292.
    MJ McAllister, JL Li, DH Adamson, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite
    [J]. Chemistry of Materials, 2007, 19: 4396-4404.
    H Bai, C Li, X Wang, et al. On the gelation of graphene oxide
    [J]. The Journal of Physical Chemistry C, 2011, 115: 5545-5551.
    X Wang, H Bai, G Shi. Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation
    [J]. Journal of the American Chemical Society, 2011, 133: 6338-6342.
    B Konkena, S Vasudevan. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements
    [J]. The Journal of Physical Chemistry Letters, 2012, 3: 867-872.
    D Li, MB Muller, S Gilje, et al. Processable aqueous dispersions of graphene nanosheets
    [J]. Nat Nano, 2008, 3: 101-105.
    T Szabó, O Berkesi, P Forgó, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides
    [J]. Chemistry of Materials, 2006, 18: 2740-2749.
    AI Brodskii, LA Kotorlenko, SA Samoilenko, et al. IR spectra of screened phenols, phenol radicals, quinone, and cyclohexadienone
    [J]. Journal of Applied Spectroscopy, 1971, 14: 633-638.
    Everett DH, Basic Principles of Colloid Science; The Royal Society of Chemistry, London, 1988: 127-145.
    L Lai, L Chen, D Zhan, et al. One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties
    [J]. Carbon, 2011, 49: 3250-3257.
    A Lerf, H He, M Forster, et al. Structure of graphite oxide revisited
    [J]. The Journal of Physical Chemistry B, 1998, 102: 4477-4482.
    S Pei, HM Cheng. The reduction of graphene oxide
    [J]. Carbon, 2012, 50: 3210-3228.
  • 加载中
计量
  • 文章访问数:  1194
  • HTML全文浏览量:  58
  • PDF下载量:  935
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 录用日期:  2015-02-13
  • 修回日期:  2015-01-29
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回