留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同还原温度制备RGO/MnO2复合材料对电容增效的影响

王令云 王勇 章海霞 王晓敏

王令云, 王勇, 章海霞, 王晓敏. 不同还原温度制备RGO/MnO2复合材料对电容增效的影响. 新型炭材料, 2015, 30(1): 48-53. doi: 10.1016/S1872-5805(15)60175-5
引用本文: 王令云, 王勇, 章海霞, 王晓敏. 不同还原温度制备RGO/MnO2复合材料对电容增效的影响. 新型炭材料, 2015, 30(1): 48-53. doi: 10.1016/S1872-5805(15)60175-5
WANG Ling-yun, WANG Yong, ZHANG Hai-xia, WANG Xiao-min. Effect of thermal reduction temperature on the electrochemical performance of reduced graphene oxide/MnO2 composites. New Carbon Mater., 2015, 30(1): 48-53. doi: 10.1016/S1872-5805(15)60175-5
Citation: WANG Ling-yun, WANG Yong, ZHANG Hai-xia, WANG Xiao-min. Effect of thermal reduction temperature on the electrochemical performance of reduced graphene oxide/MnO2 composites. New Carbon Mater., 2015, 30(1): 48-53. doi: 10.1016/S1872-5805(15)60175-5

不同还原温度制备RGO/MnO2复合材料对电容增效的影响

doi: 10.1016/S1872-5805(15)60175-5
基金项目: 国家自然科学基金(51172152, 51242007).
详细信息
    作者简介:

    王令云,硕士研究生.E-mail:gangbnstyle@sina.com

    通讯作者:

    王晓敏,教授.E-mail:wangxiaomin@tyut.edu.cn

  • 中图分类号: TQ424.1

Effect of thermal reduction temperature on the electrochemical performance of reduced graphene oxide/MnO2 composites

Funds: National Natural Science Foundation of China (51172152, 51242007).
  • 摘要: 将氧化石墨烯GO (Graphene oxide)进行热还原得到RGO(Reduced graphene oxide),通过液相法原位合成出RGO/MnO2电极复合材料。采用扫描电镜(SEM)、X射线衍射(XRD)、傅里叶红外(FT-IR)、四探针法和循环伏安测试表征分析复合材料的表面形貌、微观结构、电导率和比电容。结果表明,相较于纯MnO2和GO/MnO2电极材料,RGO/MnO2复合材料比电容得到提高。热还原温度为600℃时比电容最高,为321F·g-1。这可能是GO的加入显著降低了MnO2的团聚程度,增大了MnO2参与赝电容反应的活性面积。热还原得到的RGO有效提高了复合材料的电导率,其残留的含氧官能团提供了一定的赝电容。
  • Yu Gui-hua, Hu Liang-bing, Liu Nian, et al.Enhancing the supercapacitor performance of graphene MnO2 nanostructured electrodes by conductive wrapping
    [J]. Nano Lett, 2011, 11(10): 4438-4442.
    Wei Wei-feng, Cui Xin-wei, Chen Wei-xing, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes
    [J]. Chem Soc Rev, 2011, 40(3): 1697-1721.
    S Devaraj, N Munichandraiah. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties
    [J]. Journal of Physical Chemistry C, 2008, 112(11): 4406-4417.
    Yang Yu-juan, Huang Cheng-de. Effect of synthetical conditions,morphology, and crystallographic structure of MnO2 on its electrochemical behavior
    [J]. J Solid State Electr, 2010, 14(7): 1293-1301.
    V Subramanian, Zhu Hong-wei, Bingqing Wei. Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte
    [J]. CPL, 2008, 453(4): 242-249.
    Daniel Bélanger, L Brousse, Jeffrey W Long. Manganese oxides: battery materials make the leap to electrochemical capacitors
    [J]. The Electrochemical Society Interface, 2008, 17(1): 49-52.
    Wang Yu-qin, Yuan An-bao, Wang Xiu-ling. Pseudocapacitive behaviors of nanostructured manganese dioxidecarbon nanotubes composite electrodes in mild aqueous electrolytes: effects of electrolytes and current collectors
    [J]. J Solid State Electr, 2008, 12(9): 1101-1107.
    Wang Jian-gan, Yang Ying, Huang Zheng-hong, et al. Incorporation of nanostructured manganese dioxide into carbon nanofibers and its electrochemical performance
    [J]. Mat L, 2012, 72(4): 18-21.
    Fan Zhuang-jun, Yan Jun, Wei Tong, et al. Asymmetric supercapacitors based on graphene MnO2 and activated carbon nanofiber electrodes with high power and energy density
    [J]. Adv Funct Mater, 2011, 21(12): 2366-2375.
    Deng Ling-juan, Zhu Guang, Wang Jian-fang, et al. Graphene-MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte
    [J]. J Power Sources, 2011, 196(24): 10782-10787.
    A.K. Geim,Graphene: status and prospects
    [J]. Science, 2009, 324(5934): 1530-4.
    JIN Yu, CHEN Hong-hai, CHEN Ming-hai, et al. Carbon nanotube polyaniline graphene composite paper and its electrochemical capacitance behaviors
    [J]. Acta Phys. -Chim. Sin, 2009, 28,(03): 609-614. (靳 瑜, 陈宏源, 陈名海. 碳纳米管聚苯胺石墨烯复合纳米碳纸及其电化学电容行为
    [J]. 物理化学学报, 2012, 28(03): 609-614.)
    Xu Bin, Yue Shu-fang, Sui Zhu-yin, et al. What is the choice for supercapacitors: graphene or graphene oxide
    [J]. Energy & Environmental Science, 2011, 4(8): 2826-2830.
    Chen Sheng, Zhu Jun-wu, Wu Xiao-dong, et al.Graphene oxide MnO2 nanocomposites for supercapacitors
    [J].Acs Nano, 2010, 4(5): 2822-2830.
    Dmitriy A Dikin, Sasha Stankovich, Eric J Zimney, et al. Preparation and characterization of graphene oxide paper
    [J].Nature, 2007, 448(7152): 457-460.
    WANG Yong-zhen, WANG Yan, HAN Fei, et al. The effect of heat treatment on the electrical conductivity of highly conducting graphene films
    [J]. New Carbon Materials, 2012, 27(4): 266-270. (王永祯, 王 艳, 韩 非. 还原热处理对石墨烯薄膜导电性的影响
    [J]. 新型炭材料, 2012, 27(4): 266-270.)
    Goki Eda, Giovanni Fanchini, Manish Chhowalla. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
    [J]. Nature nanotechnology, 2008, 3(5): 270-274.
    Myeongjin Kim, Yongseon Hwang, Kyungchan Min, et al. Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors
    [J]. Electrochim Acta, 2013, 113(0): 322-331.
    Ha Fei, Wang Xiao-min, Lian Jie, et al. The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction
    [J]. Carbon, 2012, 50(15): 5498-5504.
    Jiang Rong-rong, Huang Tao, Tang Yang, et al. Factors influencing MnO2 multi-walled carbon nanotubes composite's electrochemical performance as supercapacitor electrode
    [J]. Electrochim Acta, 2009, 54(27): 7173-7179.
    Ragupathy P, Park D H, Campet G, et al. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor
    [J]. The Journal of Physical Chemistry C, 2009, 113(15): 6303-6309.
    LIU Yan-zhen, LI Yong-feng, YANG Yong-gang, et al. The effect of thermal treatment at low temperatures on graphene oxide films
    [J]. New Carbon Materials, 2011, 26(1): 41-45. (刘燕珍, 李永锋, 杨永岗. 低温热处理对氧化石墨烯薄膜的影响
    [J]. 新型炭材料, 2011, 26(1): 41-45.)
    Wang Da-wei, Li Feng, Wu Zhong-shuai, et al. Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers
    [J]. Electrochem Commun, 2009, 11(9): 1729-1732.
    Zhao Bing, Liu Peng, Jiang Yong, et al. Supercapacitor performances of thermally reduced graphene oxide
    [J]. J Power Sources, 2012, 198(0): 423-427.
    Geng Jian-xin, Liu Lei-jing, Yang Seung-bo, et al. A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension
    [J]. Journal of Physical Chemistry C, 2010, 114(34): 14433-14440.
    James G Radich, Prashant V Kamat. Making graphene holey. Gold nanoparticle mediated hydroxyl radical attack on reduced graphene oxide
    [J]. ACS Nano, 2013, 7(6): 5546-5557.
    Sung Mook Choi, Min Ho Seo, Hyung Ju Kim, et al. Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation
    [J]. Carbon, 2011, 49(3): 904-909.
    ZHANG Li-li, ZHAO Xin, Meryl D.Stoller, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors
    [J]. Nano Lett, 2012, 12(4): 1806-1812.
    Frackowiak E,Beguin F. Carbon materials for the electrochemical storage of energy in capacitors
    [J]. Carbon, 2001, 39(6): 937-950.
    Chen Cheng-meng, Zhang Qiang, Yang Mang-guo, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors
    [J]. Carbon, 2012, 50(10): 3572-3584.
  • 加载中
计量
  • 文章访问数:  947
  • HTML全文浏览量:  93
  • PDF下载量:  1515
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-21
  • 录用日期:  2015-02-13
  • 修回日期:  2015-01-18
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回