留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橡胶木屑基活性炭—聚氨酯复合材料的制备及其微波吸收性能

Azizah Shaaban Sian-Meng Se Imran Mohd Ibrahim Qumrul Ahsan

Azizah Shaaban, Sian-Meng Se, Imran Mohd Ibrahim, Qumrul Ahsan. 橡胶木屑基活性炭—聚氨酯复合材料的制备及其微波吸收性能. 新型炭材料, 2015, 30(2): 167-175. doi: 10.1016/S1872-5805(15)60182-2
引用本文: Azizah Shaaban, Sian-Meng Se, Imran Mohd Ibrahim, Qumrul Ahsan. 橡胶木屑基活性炭—聚氨酯复合材料的制备及其微波吸收性能. 新型炭材料, 2015, 30(2): 167-175. doi: 10.1016/S1872-5805(15)60182-2
Azizah Shaaban, Sian-Meng Se, Imran Mohd Ibrahim, Qumrul Ahsan. Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption. New Carbon Mater., 2015, 30(2): 167-175. doi: 10.1016/S1872-5805(15)60182-2
Citation: Azizah Shaaban, Sian-Meng Se, Imran Mohd Ibrahim, Qumrul Ahsan. Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption. New Carbon Mater., 2015, 30(2): 167-175. doi: 10.1016/S1872-5805(15)60182-2

橡胶木屑基活性炭—聚氨酯复合材料的制备及其微波吸收性能

doi: 10.1016/S1872-5805(15)60182-2
详细信息
    作者简介:

    Azizah Shaaban, Ph.D, Associate Professor. E-mail: azizahs@utem.edu.my

    通讯作者:

    Sian-Meng Se, Ph. D Candidate. E-mail: sianmeng@gmail.com

  • 中图分类号: TB332

Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption

  • 摘要: 采用ZnCl2对橡胶木屑进行化学活化制备出活性炭。ZnCl2与橡胶木屑的浸渍质量比为1.0-2.0,活化温度为500 ℃,时间为 60 min。通过扫描电镜、X射线衍射和BET比表面分析仪探讨浸渍比例对活性炭孔结构的影响。结果表明,当浸渍比为1.5:1时,样品的比表面积和孔径分别为1 301 m2/g 和0.37 cm3/g。通过化学发泡工艺将不同质量分数(1%, 2%, 3%, 5%, 8%)的活性炭填充至聚氨酯中制备出聚氨酯复合材料。在1-5 GHz频率范围内,复合材料吸收微波。随着活性炭含量增加,在1-3 GHz范围内,介电常数(ε')和回波损耗增加。活性炭含量为8%时复合材料的介电常数达到最大值3.0。在1.8 GHz时,复合材料的回波损耗为10 dB。在-2.5 GHz,电磁屏蔽效率大于3 dB。与传统聚合物材料如填加金属的聚氨酯和聚酯相比,所制复合材料呈微波段吸收,可作为电磁屏蔽材料。
  • Hameed B H, Ahmad A L, Latiff K N A. Adsorption of basic dye (methyl blue) onto activated carbon prepared form rattan sawdust
    [J]. Dye Pigment, 2007, 75: 143-149.
    Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice husk: Product yields and compositions
    [J]. Bioresour Technol, 2007, 98 (1): 22-28.
    Liou T H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation
    [J]. Chem Eng, 2009, 158: 129-142.
    Rajkovich S, Ender A, Hanley K, et al. Corn growth and nitrogen nutrition after additions of biochars with vary properties to a temperate soil
    [J]. Biol Fertil Soils, 2012, 48: 271-284.
    Treviño-Cordero H, Juárez-Aguilar L G, Mendoza-Castillo D I, et al. Synthesis and adsorption properties of activated carbons from biomass of prunes domestic and jacaranda mimosifolia for the removal of heavy metals and dyes from water
    [J]. Ind Crops Prod, 2013, 42: 315-323.
    Liou T H, Wu S J. Characteristics of microporous/mesoporous carbons prepared from rice husk under base and acid treated conditions
    [J]. Hazard Mater, 2009, 171: 693-703.
    Demirbas A. Agricultural based activated carbon for the removal of dyes from aqueous solutions: A review
    [J]. Hazard Mater, 2009, 167: 1-9.
    Zhong Z Y, Yang Q, Li X M, et al. Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in remazol brilliant blue R adsorption
    [J]. Ind Crops Prod, 2012, 37: 178-185.
    Liu Q S, Zheng T, Wang P, et al. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation
    [J]. Ind Crops Prod, 2010, 31: 233-238.
    Cesar N D, Jose R R M. Production of activated carbon from organic by-products from the alcoholic beverage industry: Surface area and hardness optimization by using the response surface methodology
    [J]. Ind Crops Prod, 2011, 34: 1528-1537.
    Andrew S. Microwave Absorber: Reducing cavity resonant compliance engineering
    [M]. 2010.
    Ibrahim I M, Yaakob N M, Husian M N, et al. The effects of carbon to the S11 measurement on the pyramidal microwave absorber
    [R]. Wirel Technol Appl IEEE Smyp, 2011, 141-145.
    Srinisvasakanan C, Bakar M Z A. Production of activated carbon from rubber wood sawdust
    [J]. Biomass Bioenerg, 2004, 27: 89-96.
    Chaisarn P, Satapanajaru T, Mahujchariyawong J. Adsorption of VOCs by activated charcoal produced from saw dust in para-rubber wood furniture manufacturing
    [J]. Thammasat Int J Sci Technol, 2008, 13: 8-17.
    Lee S T, Ramesh N S. Polymeric foam: mechanisms and materials. Polymeric foams: Mechanisms and materials thermoplastic foam processing: Principles and applications
    [R]. CRC Press, New York, 2004.
    Nornikman H, Malek F, Soh P J, et al. Effect on source signal condition for pyramidal microwave absorber performance
    [R]. Int Conf Comput Commun Eng , Kuala Lumpur, 11-13 May 2010, Malaysia.
    Arindam D, Harun T H, Manish K T, et al. Super hydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding
    [J]. Colloid Interface Sci, 2011, 353: 311-315.
    Pecharsky V K, Zavalij P Y. Fundamental of powder diffraction and structural characterization of materials
    [M]. Springer, USA, 2009.
    Kalderis D, Bethanis S, Paraskeva P, et al. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times
    [J]. Bioresour Technol, 2008, 99(15): 6809-6816.
    Trejo G, Network Analyzer Basics
    [M]. Agil Technol California, 2006.
    Ahmad AY, Ali W K W, Rahman T A, et al. Microwave and reflection properties of palm shell carbon-polyester conductive composite absorber
    [J]. Technol, 2005, 42(A): 59-74.
    Nornikman H, Malek F. Parametric studies of the pyramidal microwave absorber using rice husk
    [J]. Prog Electromagn Res, PIER, 2010, 104: 145-166.
    Liu Y, Zhang Z, Xiao S, et al. Preparation and properties of cobalt oxides coated carbon fibres as microwave-absorbing materials
    [J]. Appl Surf Sci, 2011, 257: 7678-7683.
    Lakshmi K, John H, Mathew K T, et al. Microwave absorption, reflection and EMI shielding of PU-PANI composite
    [J]. Acta Mater, 2008, 57: 371-375.
  • 加载中
计量
  • 文章访问数:  704
  • HTML全文浏览量:  66
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-30
  • 录用日期:  2015-05-04
  • 修回日期:  2015-04-10
  • 刊出日期:  2015-04-28

目录

    /

    返回文章
    返回