留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管纱的时间依赖电性能

H. E. Misak S. Mall

H. E. Misak, S. Mall. 碳纳米管纱的时间依赖电性能. 新型炭材料, 2015, 30(3): 207-213. doi: 10.1016/S1872-5805(15)60186-X
引用本文: H. E. Misak, S. Mall. 碳纳米管纱的时间依赖电性能. 新型炭材料, 2015, 30(3): 207-213. doi: 10.1016/S1872-5805(15)60186-X
H. E. Misak, S. Mall. Time-dependent electrical properties of carbon nanotube yarns. New Carbon Mater., 2015, 30(3): 207-213. doi: 10.1016/S1872-5805(15)60186-X
Citation: H. E. Misak, S. Mall. Time-dependent electrical properties of carbon nanotube yarns. New Carbon Mater., 2015, 30(3): 207-213. doi: 10.1016/S1872-5805(15)60186-X

碳纳米管纱的时间依赖电性能

doi: 10.1016/S1872-5805(15)60186-X
详细信息
    通讯作者:

    S. Mall. E-mail: shankar.mall@afit.edu

  • 中图分类号: TQ127.1+1

Time-dependent electrical properties of carbon nanotube yarns

  • 摘要: 碳纳米管(CNTs)在电力转换领域具有潜在前景。本文表征碳纳米管纱随时间变化对电力的转换性能影响。通过建立I-V关系,结果表明存在3个区域,即线性、非线性和下降区域。线性区域表明呈现低且恒定电阻。当恒定电压处于I-V线性区域时,输出电流强度不随时间而改变。然而,当恒定电压处于非线性区域时,电流强度以指数级下降后随时间而趋平。在恒电流测试下,电压仅在电流强度处于非线性区时增加。依赖时间的导电性能可通过短路来理解。短路发生在非线性区域的碳纳米管纱中炽热部位,会导致热性能降低。通过热图像、热重分析、扫描电镜和能谱分析等手段对碳纳米管纱进行分析。
  • Harris P J F. Carbon Nanotube Science: Synthesis, Properties and Applications
    [M]. Cambridge: Cambridge University Press Cambridge, 2009.
    Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology
    [J]. Science, 2004, 306: 1358-1361.
    Tran C D, Humphries W, Smith S M, et al. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process
    [J]. Carbon, 2009, 47: 2662-2670.
    Zhang X, Jiang K, Feng C, et al. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays
    [J]. Advanced Materials, 2006, 18: 1505-1510.
    Lu W, Zu M, Byun J H, et al. State of the art of carbon nanotube fibers: opportunities and challenges
    [J]. Advanced Materials, 2012, 24: 1805-1833.
    Misak H E, Mall S. Investigation into microstructure of carbon nanotube multi-yarn
    [J]. Carbon, 2014, 72: 321-327.
    Misak H E, Sabelkin V, Mall S, et al. Failure analysis of carbon nanotube wires
    [J]. Carbon, 2012, 50: 4871-4879.
    Zhang X, Li Q, Holesinger T G, et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers
    [J]. Advanced Material, 2007, 19: 4198-4201.
    Jakubinek M B, Johnson M B, White M A, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns
    [J]. Carbon, 2012, 50: 244-248.
    Misak H E, Sabelkin V, Mall S, et al. Thermal fatigue and hypothermal atomic oxygen exposure behavior of carbon na notube wire
    [J]. Carbon, 2013, 57: 42-49.
    Sabelkin V, Misak H E, Mall S, et al. Tensile loading behavior of carbon nanotube wires
    [J]. Carbon, 2012, 50: 2530-2538.
    Misak H E, Sabelkin V, Miller L, et al. Creep and inverse stress relaxation behaviors of carbon nanotube yarns
    [J]. Journal of Nanoscience Nanotechnology, 2013, 13: 8331-8339.
    Lima M D, Li N, Jung de Andrade M, et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles
    [J]. Science, 2012, 338: 928-932.
    Chun K Y, Hyeong Kim S, Kyoon Shin M, et al. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk
    [J]. Nature Communication, 2014, 5, 3322.
    Foroughi J, Spinks G M, Wallace G G, et al. Torsional carbon nanotube artificial muscles
    [J]. Science, 2011, 334: 494-497.
    Choi C, Lee J A, Choi A Y, et al. Flexible supercapacitor made of carbon nanotube yarn with internal pores
    [J]. Advanced Materials, 2014, 26: 2059-2065.
    Keller S D, Zaghloul A I, Shanov V, et al. Electromagnetic simulation and measurement of carbon nanotube thread dipole antennas
    [J]. Nanotechnology, IEEE Transactions on, 2014, 13: 394-403.
    Zhao Y, Wei J, Vajtai R,et al. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals
    [J]. Science Reports, 2011, 1: 83.
    Giancoli D C. Physics for Scientists and Engineers with Modern Physics
    [M]. 4th edition, New Jersey: Pearson Education, 2008.
    Miao M. Electrical conductivity of pure carbon nanotube yarns
    [J]. Carbon, 2011, 49: 3755-3761.
    Misak H, Asmatulu R, O'Malley M, et al. Functionalization of carbon nanotube yarn by acid treatment
    [J]. International Journal of Smart and Nano Materials, 2014, 5: 34-43.
    Collins P G, Hersam M, Arnold M, et al. Current saturation and electrical breakdown in multiwalled carbon nanotubes
    [J]. Physical Review Letters, 2001, 86: 3128-3131.
  • 加载中
计量
  • 文章访问数:  632
  • HTML全文浏览量:  55
  • PDF下载量:  1017
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-15
  • 录用日期:  2015-09-07
  • 修回日期:  2015-06-04
  • 刊出日期:  2015-06-28

目录

    /

    返回文章
    返回