留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热解炭中原位熔盐催化SiC纳米线的合成及表征

王富成 赵雷 方伟 何漩 梁峰 陈辉 陈欢 杜星

王富成, 赵雷, 方伟, 何漩, 梁峰, 陈辉, 陈欢, 杜星. 热解炭中原位熔盐催化SiC纳米线的合成及表征. 新型炭材料, 2015, 30(3): 222-229. doi: 10.1016/S1872-5805(15)60187-1
引用本文: 王富成, 赵雷, 方伟, 何漩, 梁峰, 陈辉, 陈欢, 杜星. 热解炭中原位熔盐催化SiC纳米线的合成及表征. 新型炭材料, 2015, 30(3): 222-229. doi: 10.1016/S1872-5805(15)60187-1
WANG Fu-cheng, ZHAO Lei, FANG Wei, HE Xuan, LIANG Feng, CHEN Hui, CHEN Huan, DU Xing. Synthesis and characterization of silicon carbide nanowires from lignin-phenolic resin and silicon powder with an in-situ formed molten salt as catalyst. New Carbon Mater., 2015, 30(3): 222-229. doi: 10.1016/S1872-5805(15)60187-1
Citation: WANG Fu-cheng, ZHAO Lei, FANG Wei, HE Xuan, LIANG Feng, CHEN Hui, CHEN Huan, DU Xing. Synthesis and characterization of silicon carbide nanowires from lignin-phenolic resin and silicon powder with an in-situ formed molten salt as catalyst. New Carbon Mater., 2015, 30(3): 222-229. doi: 10.1016/S1872-5805(15)60187-1

热解炭中原位熔盐催化SiC纳米线的合成及表征

doi: 10.1016/S1872-5805(15)60187-1
基金项目: 国家重点基础研究发展计划(973计划, 2012CB722702); 耐火材料与冶金国家重点实验室开放基金(2014QN17).
详细信息
    作者简介:

    王富成,博士研究生. E-mail: xy-wfc@163.com

  • 中图分类号: TQ050.4+3

Synthesis and characterization of silicon carbide nanowires from lignin-phenolic resin and silicon powder with an in-situ formed molten salt as catalyst

Funds: National Basic Research Program of China (973 Program, 2012CB722702); Open Foundation of the State Key Laboratory of Refractories and Metallurgy (2014QN17).
  • 摘要: 不加金属催化剂,以碱木素酚醛树脂(LPF)和硅粉作为原料在低温条件下合成SiC纳米线。利用SEM、TEM、XRD表征样品的形貌及显微结构,用热力学方法分析反应条件对SiC纳米线生长的影响。结果表明,SiC纳米线在1100 ℃左右开始生长,其由气-液-固生长机理控制,同时其生成温度比用商业酚醛树脂作为原料低。生成的SiC纳米线的直径为30~100 nm并沿晶面的[1 1 1]方向生长。碱木素酚醛树脂中的无机盐在热解炭化过程中原位形成熔盐并起着液相催化剂球滴的作用,促进SiC纳米线的生长,并提出合成SiC纳米线的生长机理模型。
  • Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength and toughness of nanorods and annotates
    [J]. Science, 1997, 277(5334): 1971- 1975.
    Chen Y F, Liu X Z, Deng X W. Factors affecting the growth of SiC nano- whiskers
    [J]. Journal of Materials Science and Technology, 2010, 26(11): 1041- 1046.
    Senthil K, Yong K. Enhanced field emission from density-controlled SiC nanowires
    [J]. Materials Chemistry and Physics, 2008, 112(1): 88-93.
    Ding D H, Shi Y M, Wu Z H, et al. Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase
    [J]. Carbon, 2013, 60: 552-555.
    Takahashi K, Yokouchi M, Lee S K, et al. Crack-healing behavior of Al2O3 toughened by SiC whiskers
    [J]. Journal of the American Ceramic Society, 2003, 86 (12): 2143-2147.
    Muhammad A S, Hidekazu S. Fabrication and characterization of ceramic matrix composites reinforced by in situ formation of β-silicon carbide
    [J]. Scripta Materialia, 2008, 58(8): 711-714.
    Martin H P, Ecke R, Muller E. Synthesis of nanocrystalline silicon carbide powder by carbothermal reduction
    [J]. Journal of the European Ceramic Society, 1998, 18(12): 1737-1742.
    Shi W S, Zheng Y F, Peng H Y, et al. Laser ablation synthesis and optical characterization of silicon carbide nanowires
    [J]. Journal of the American Ceramic Society, 2000, 83(12): 3228-3230.
    Yao X M, Tan S H, Huang Z G, et al . Growth mechanism of β-SiC nanowires in SiC reticulated porous ceramics
    [J]. Ceramics International, 2007, 33(6): 901-904.
    Givargizov E I. Fundamental aspects of VLS growth
    [J]. Journal of Crystal Growth, 1975, 31: 20-30.
    Berman, Ryan C E. The growth of silicon carbide needles by the vapor-liquid- solid method
    [J]. Journal of Crystal Growth, 1971, 9: 314-318.
    Nutt S R. Microstructure and growth model for rice-hull-derived SiC whiskers
    [J]. Journal of the American Ceramic Society, 1988, 71(3): 149-156.
    Guo J Z, Zuo Y, Li Z J, et al. Preparation of SiC nanowires with fins by chemical vapor deposition
    [J]. Physical E, 2007, 39(2): 262-266.
    Chen K, Huang Z H, Huang J T, et al. Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant
    [J]. Ceramics International, 2013, 39(2): 1957-1962.
    Du X W, Zhao X, Jia S L, et al. Direct synthesis of SiC nanowires by multiple reaction VS growth
    [J]. Materials Science and Engineering B, 2007, 136(1): 72-77.
    Ding J, Deng C J, Yuan W J, et al. Novel synthesis and characterization of silicon carbide nanowires on graphite flakes
    [J]. Ceramics International, 2013, 40(3): 4001-4007.
    Li Y W, Wang Q H, Fan H H, et al. Synthesis of silicon carbide whiskers using reactive graphite as template
    [J]. Ceramics International, 2014, 40(1): 1481-1488.
    LIU Dong, YU Yan, ZHANG Qiu-hui, et al. Formation of SiC nano-micro rods from silica-sol infiltrated bamboo charcoal through carbothermal reduction
    [J]. New carbon materials, 2011, 26(6): 435-440. (刘 冬, 余 雁, 张求慧, 等. 竹炭为模板高温法制备SiC纳微米棒
    [J]. 新型炭材料, 2011, 26(6): 435-440.)
    Zhao H S, Shi L M, Li Z Q, et al. Silicon carbide nanowires synthesized with phenolic resin and silicon powders
    [J]. Physica E, 2009, 41(4): 753-756.
    Wang M, Leitch M, Xu C. Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins
    [J]. European Polymer Journal, 2009, 45(12): 3380-3388.
    Huang H, Fox J T, Cannon F S, et al. In situ growth of silicon carbide nanowires from anthracite surfaces
    [J]. Ceramics International, 2011, 37(3): 1063-1072.
    McMahon G, Carpenter G J C, Malis T F. On the growth mechanism of silicon carbide whiskers
    [J]. Journal of Materials Science, 1991, 26(20): 5655-5663.
    Attolini G, Rossi F, Fabbri F, et al. A new growth method for the synthesis of 3C-SiC nanowires
    [J]. Materials Letters, 2009, 63(29): 2581-2583.
    Park B T, Ryu Y W, Yong K J. Growth and characterization of silicon carbide nanowires
    [J]. Surface Review and Letters, 2004, 11(4-5): 373-378.
    WU Xiang-yang, JIN Guo-qiang, GUO Xiang-yun. Effects of the amounts of Fe catalyst on stacking faults and morphologies of β-SiC
    [J]. New carbon materials, 2005, 20 (4): 324-328. (武向阳, 靳国强, 郭向云. 溶胶-凝胶中Fe催化剂用量对β-SiC堆积缺陷和形貌的影响
    [J]. 新型炭材料, 2005, 20 (4): 324-328.)
    Chen X L, Li Y B, Li Y W. Carbothermic reduction synthesis of Ti (C, N) powder in the presence of molten salt
    [J]. Ceramics International, 2008, 34(5): 1253- 1259.
    Zhang S, Marriott N J, Lee W E. Thermochemistry and micro-structures of MgO-C refractories containing various antioxidants
    [J]. Journal of the European Ceramic Society, 2001, 21(13): 1037-1047.
  • 加载中
计量
  • 文章访问数:  811
  • HTML全文浏览量:  124
  • PDF下载量:  1118
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-20
  • 录用日期:  2015-09-07
  • 修回日期:  2015-06-01
  • 刊出日期:  2015-06-28

目录

    /

    返回文章
    返回