留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土豆淀粉基杏仁状炭及其非酶检测蔗糖

Soma Das Mitali Saha

Soma Das, Mitali Saha. 土豆淀粉基杏仁状炭及其非酶检测蔗糖. 新型炭材料, 2015, 30(3): 244-251. doi: 10.1016/S1872-5805(15)60189-5
引用本文: Soma Das, Mitali Saha. 土豆淀粉基杏仁状炭及其非酶检测蔗糖. 新型炭材料, 2015, 30(3): 244-251. doi: 10.1016/S1872-5805(15)60189-5
Soma Das, Mitali Saha. Potato starch-derived almond-shaped carbon nanoparticles for non enzymatic detection of sucrose. New Carbon Mater., 2015, 30(3): 244-251. doi: 10.1016/S1872-5805(15)60189-5
Citation: Soma Das, Mitali Saha. Potato starch-derived almond-shaped carbon nanoparticles for non enzymatic detection of sucrose. New Carbon Mater., 2015, 30(3): 244-251. doi: 10.1016/S1872-5805(15)60189-5

土豆淀粉基杏仁状炭及其非酶检测蔗糖

doi: 10.1016/S1872-5805(15)60189-5
详细信息
    通讯作者:

    Mitali Saha. E-mail: mitalichem71@gmail.com

  • 中图分类号: TQ127.1+1

Potato starch-derived almond-shaped carbon nanoparticles for non enzymatic detection of sucrose

  • 摘要: 以土豆淀粉为原料,通过先在400-500 ℃空气中炭化,再于800 ℃裂解制备出杏仁状炭(CNA)颗粒,并组装成高灵敏度和选择性的非酶蔗糖传感器。采用扫描电镜、X射线衍射仪、X射线光电子能谱仪、原子力和荧光显微镜对样品进行表征。通过循环伏安、微分脉冲伏安法及线性扫描法在酸性溶液中对蔗糖进行电化学检测。结果表明,这种新传感器对蔗糖氧化呈现良好的响应,具有宽的线性范围(R2 = 0.996 79),高灵敏度(~41.737 25±0.01 μAμM-1·cm-2)、低的检测限(1 μmol/L),高的稳定性及短的响应时间(9 s)。
  • Iijima S, Helical microtubules of graphitic carbon
    [J]. Nature, 1991, 354: 56-58.
    Yu J, Ahn J, Zhang Q, et al. Catalyzed growth of carbon nanoparticles by microwave plasma chemical vapor deposition and their field emission properties
    [J]. J Appl Phys, 2002, 91: 433-436.
    Wu S, Deng J, Zhang T, et al. Tunable synthesis of carbon nanosheet/silicon nanowire hybrids for field emission applications
    [J]. Diamond Rela Mater, 2002, 11: 922-925.
    Sano N, Kikuchi T, Wang H, et al. Carbon nanohorns hybridized with a metal-included nanocapsule
    [J]. Carbon, 2004, 42: 95-99.
    Ugarte D. Curing and closure of graphitic networks under electron-beam irradiation
    [J]. Nature, 1992, 359: 707-709.
    Krishnamurthy S, Butenko Y V, Dhanak V R, et al. In situ formation of onion-like carbon from the evaporation of ultra-dispersed nanodiamonds
    [J]. Carbon, 2013, 52: 145-149.
    Ando Y, Zhao X, Ohkohchi M. Production of petal-like graphite sheets by hydrogen arc discharge
    [J]. Carbon, 1997, 35: 153-158.
    Claussen J C, Franklin A D, UHaque A, et al. Electrochemical biosensor of nanocube-augmented carbon nanotube networks
    [J]. ACS Nano, 2009, 3: 37-44.
    Lord H, Kelley S O. Nanomaterials for ultrasensitive electrochemical nucleic acids biosensing
    [J]. J Mater Chem, 2009, 19: 3127- 3134.
    Wang J. Nanomaterial-based electrochemical biosensors
    [J]. Analyst, 2005, 130: 421- 426.
    Reitz E, Jia W, Gentile M, et al. CuO nanospheres based nonenzymatic. glucose sensor
    [J]. Electroanal, 2008, 20: 2482- 2486.
    Serhiy C, Chan H C. Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection
    [J]. Sens Actuators B,2009, 142: 216- 223.
    Singh K, Umar A, Kumar A, et al. Non-enzymatic glucose sensor based on well crystallized ZnO nanoparticles
    [J]. Sci Adv Mater, 2012, 4: 994- 1000.
    Zhao J, Wei L, Peng C, et al. A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes
    [J]. Biosens Bioelectron, 2013, 46: 86- 91.
    Liu M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability
    [J]. Biosens Bioelectron, 2013, 45: 206- 212.
    Liu S, Yu B, Zhang T. A novel non-enzymatic glucose sensor based on NiO hollow spheres
    [J]. Electrochim Acta, 2013, 102: 104-107.
    B Yuan, C Xu, D Deng, et al. Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor
    [J]. Electrochim Acta, 2013, 88: 708-712.
    Estrella M, Ioanis K, Elena D. Amperometric flow-injection determination of sucrose with a mediated tri-enzyme electrode based on sucrose phosphorylase and electrocatalytic oxidation of NADH
    [J]. Biosens Bioelectron, 2001, 16: 61-68.
    Haghighi B, Varma S, Alizadeh Sh FM, et al. Prussian blue modified glassy carbon electrodes-study on operational stability and its application as a sucrose biosensor
    [J]. Talanta, 2004. 64: 3-12.
    Shekarchizadeh H, Ensafi A, Kadivara M. Selective determination of sucrose based on electropolymerized molecularly imprinted polymer modified multiwall carbon nanotubes/glassy carbon electrode
    [J]. Matr Sc Eng C, 2013, 33: 3553-3561.
    Haghighia B, Varmab S, Alizadeh Shc F M, et al. Prussian blue modified glassy carbon electrodes—Study on operational stability and its application as a sucrose biosensor
    [J]. Talanta, 2004, 64: 3-12.
    Das Soma, Saha Mitali. Non enzymatic electrochemical detection of glucose at rice starch-nanoparticles modified electrode
    [J]. Int J Pharm Bio Sci, 2013, 4: 967-975.
    Das Soma, Saha Mitali. Preparation of carbon nanosphere from bamboo and its use in water purification
    [J]. Current Trnds Tech Sc, 2013, 2: 174-177.
    Das Soma, Saha Mitali. Electrochemical studies of carbon nanotube obtained from coconut oil as non enzymatic glucose biosensor
    [J]. Adv Sci Eng Med, 2013, 5: 645-648.
    Sonkar Sumit Kumar, Saxena Manav, Saha Mitali, et al. Carbon nanocubes and nanobricks from pyrolysis of rice
    [J]. J Nanosc Nanotech, 2010, 10: 1-4.
    Heines V, Peter Griess. Discoverer of diazo compounds
    [J]. J Chem Educ,1958, 35: 187-191.
    Kathryn E T, Richard G C. Electrochemical non-enzymatic glucose sensors: A Perspective and an evaluation
    [J]. Int J Electrochem Sci, 2010, 5: 1246-1301.
    Gosser D K Jr. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms
    [M]. Wiley-VCH, NewYork, 1993.
    Lin Y, Lu F, Tu Y, et al. Elimination of current non-uniformity in carbon anotube field emitters
    [J]. Nano Lett, 2004, 4: 191-195.
    Wang H, Zhou C, Liang J, et al. High sensitivity glucose biosensor based on Pt electrodeposition onto low-density aligned carbon nanotubes
    [J]. Int J Electrochem Sci, 2008, 3: 1258-1267.
    Dipali S. Bagal, Anu V, et al. Fabrication of sucrose biosensor based on single mode planar optical
    [J]. Biosens Bioelectron, 2007, 22: 3072-3079.
  • 加载中
计量
  • 文章访问数:  568
  • HTML全文浏览量:  61
  • PDF下载量:  841
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-04
  • 录用日期:  2015-09-07
  • 修回日期:  2015-04-12
  • 刊出日期:  2015-06-28

目录

    /

    返回文章
    返回