留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯还原度对P25/石墨烯复合材料光催化活性的影响

王剑 王猛 熊吉如 陆春华

王剑, 王猛, 熊吉如, 陆春华. 石墨烯还原度对P25/石墨烯复合材料光催化活性的影响. 新型炭材料, 2015, 30(4): 357-363. doi: 10.1016/S1872-5805(15)60195-0
引用本文: 王剑, 王猛, 熊吉如, 陆春华. 石墨烯还原度对P25/石墨烯复合材料光催化活性的影响. 新型炭材料, 2015, 30(4): 357-363. doi: 10.1016/S1872-5805(15)60195-0
WANG Jian, WANG Meng, XIONG Ji-ru, LU Chun-hua. Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene. New Carbon Mater., 2015, 30(4): 357-363. doi: 10.1016/S1872-5805(15)60195-0
Citation: WANG Jian, WANG Meng, XIONG Ji-ru, LU Chun-hua. Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene. New Carbon Mater., 2015, 30(4): 357-363. doi: 10.1016/S1872-5805(15)60195-0

石墨烯还原度对P25/石墨烯复合材料光催化活性的影响

doi: 10.1016/S1872-5805(15)60195-0
基金项目: 中国博士后基金(2014M551577).
详细信息
    作者简介:

    王剑,博士.E-mail:wangjian@sxicc.ac.cn

    通讯作者:

    陆春华.E-mail:chhlu@njtech.edu.cn

  • 中图分类号: TB332

Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene

Funds: China Postdoctoral Science Foundation(2014M551577).
  • 摘要: 采用高温热剥离和溶剂热过程分别还原氧化石墨和氧化石墨制备出石墨烯,进一步使用所合成的石墨烯与P25通过一步水热过程合成出石墨烯/P25复合材料。样品的光催化活性通过可见光下降解罗丹明B进行评测,其中P25和热剥离还原得到的石墨烯复合比P25和溶剂热还原的石墨烯复合显示出更优异的光催化活性,这是由于热剥离还原的石墨烯具有更高的还原度和更强的电子—空穴分离效率所致。进一步在不同温度下通过热剥离法制备了还原石墨烯,探讨的石墨烯/P25复合材料的光催化活性。较高的剥离温度有利于石墨烯还原程度的改善,导致光催化活性的提高。
  • Di Paola A, García-Lópeza E, Marcìa G, et al. A survey of photocatalytic materials for environmental remediation
    [J]. J Hazard Mater, 2012, 211: 3-29.
    Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting
    [J]. Chem Soc Rev, 2009, 38(1): 253-278.
    Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results
    [J]. Chem Rev, 1995, 95(3): 735-758.
    Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications
    [J]. Sol Energ Mater & Sol C, 2006, 90(14): 2011-2075.
    Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications
    [J]. Adv Mater, 2006, 18(21): 2807-2824.
    Huang B, Saka S. Photocatalytic activity of TiO2 crystallite-activated carbon composites prepared in supercritical isopropanol for the decomposition of formaldehyde
    [J]. J Wood Sci, 2003, 49(1): 79-85.
    Yu Y, Yu J C, Yu J G, et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes
    [J]. Appl Catal A: Gen, 2005, 289(2): 186-196.
    Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbonnanotube-TiO2 composites
    [J]. Adv Mater, 2009, 21(21): 2233-2239.
    Neto A C, Guinea F, Peres N, et al. The electronic properties of graphene
    [J]. Rev Mod Phys, 2009, 81(1): 109.
    Geim A K, Novoselov K S. The rise of graphene
    [J]. Nature Mater, 2007, 6(3): 183-191.
    Liang Y, Wang H, Casalongue H S, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials
    [J]. Nano Res, 2010, 3(10): 701-705.
    Kim H I, Moon G H, Monllor-Satoca D, et al. Solar photoconversion using graphene/TiO2 composites: Nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet
    [J]. J Phys Chem C, 2012, 116(1): 1535-1543.
    Zhang H, Xu P, Du G, et al. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange
    [J]. Nano Research, 2011, 4(3): 274-283.
    Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide
    [J]. Chem Soc Rev, 2010, 39(1): 228-240.
    Shen J, Yan B, Shi M, et al. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets
    [J]. J Mater Chem, 2011, 21(10): 3415-3421.
    Perera S D, Mariano R G, Vu K, et al. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity
    [J]. ACS Catal, 2012, 2(6): 949-956.
    Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide
    [J]. ACS Nano, 2008, 2(7): 1487-1491.
    Luo D, Zhang G, Liu J, et al. Evaluation criteria for reduced graphene oxide
    [J]. J Phys Chem C, 2011, 115(23): 11327-11335.
    Mcallister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite
    [J]. Chem Mater, 2007, 19(18): 4396-4404.
    Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide
    [J]. Angewandte Chemie International Edition, 2003, 42(40): 4908-4911.
    Ren W, Ai Z, Jia F, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2
    [J]. Appl Catal B- Environ, 2007, 69(3): 138-144.
  • 加载中
计量
  • 文章访问数:  561
  • HTML全文浏览量:  60
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-16
  • 录用日期:  2015-09-07
  • 修回日期:  2015-08-10
  • 刊出日期:  2015-08-28

目录

    /

    返回文章
    返回