留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管/聚酰胺纳米复合材料的制备及其阻燃和热性能

Meisam Shabanian Mohsen Hajibeygi Mehdi Roohani

Meisam Shabanian, Mohsen Hajibeygi, Mehdi Roohani. 碳纳米管/聚酰胺纳米复合材料的制备及其阻燃和热性能. 新型炭材料, 2015, 30(5): 397-403. doi: 10.1016/S1872-5805(15)60199-8
引用本文: Meisam Shabanian, Mohsen Hajibeygi, Mehdi Roohani. 碳纳米管/聚酰胺纳米复合材料的制备及其阻燃和热性能. 新型炭材料, 2015, 30(5): 397-403. doi: 10.1016/S1872-5805(15)60199-8
Meisam Shabanian, Mohsen Hajibeygi, Mehdi Roohani. Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties. New Carbon Mater., 2015, 30(5): 397-403. doi: 10.1016/S1872-5805(15)60199-8
Citation: Meisam Shabanian, Mohsen Hajibeygi, Mehdi Roohani. Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties. New Carbon Mater., 2015, 30(5): 397-403. doi: 10.1016/S1872-5805(15)60199-8

碳纳米管/聚酰胺纳米复合材料的制备及其阻燃和热性能

doi: 10.1016/S1872-5805(15)60199-8
详细信息
    通讯作者:

    Meisam Shabanian.E-mail:m.shabanian@standard.ac.ir

  • 中图分类号: TB332

Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties

  • 摘要: 首先通过壬二酸和双(对-羧苯基)苯基氧化膦直接缩聚反应得到半芳香聚酰胺(PA),采用溶液共混方法,以多壁碳纳米管(CNTs)增强PA得到新型纳米复合材料。通过TG-DSC和微尺度燃烧量热法探讨CNTs对复合材料的热性能和可燃性能的影响。当CNT添加量为5%时复合材料的失重率比纯PA提高5%,热分解温度提高70℃。与纯PA相比,复合材料的热释放速率降低,这表明CNTs能提高PA的阻燃性。
  • Song W L, Wang W, L Monica Veca, et al. Polymer/carbon nanocomposites for enhanced thermal transport properties-Carbon nanotubes versus graphene sheets as nanoscale fillers[J]. Journal of Materials Chemistry, 2012, 22(33):17133-17139.
    Al-Saleh M H, U Sundararaj. Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile-butadiene-styrene nanocomposites[J]. Journal of Polymer Science, Part B:Polymer Physics, 2012, 50(19):1356-1362.
    Ghasemi I, A T Farsheh, Z Masoomi. Effects of multi-walled carbon nanotube functionalization on the morphological and mechanical properties of nanocomposite foams based on poly(vinyl chloride)/(wood flour)/(multi-walled carbon nanotubes)[J]. Journal of Vinyl and Additive Technology, 2012, 18(3):161-167.
    Díez-Pascual A M, Mohammed N, Carlos M, et al. High-performance nanocomposites based on polyetherketones[J]. Progress in Materials Science, 2012, 57(7):1106-1190.
    Ma P C, Siddiqui Naveed A, Gad Marom, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:A review[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(10):1345-1367.
    Shabanian M, Nian-Jun Kang, De-Yi Wang, et al. Synthesis, characterization and properties of novel aliphatic-aromatic polyamide/functional carbon nanotube nanocomposites via in situ polymerization[J]. RSC Advances, 2013, 3(43):20738-20745.
    Hapuarachchi T D , T Peijs. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(8):954-963.
    Abbaszadeh S, Allec N, Karim K S. Characterization of low dark-current lateral amorphous-selenium metal-semiconductor-metal photodetector[J]. IEEE Electron Device Letters, 2011, 32(9):1263-1265.
    Cassidy P E. Thermally stable polymers:syntheses and properties[M]. 1980, Marcel Dekker Inc.
    García J M, Félix C, García, Felipe Serna, et al. High-performance aromatic polyamides[J]. Progress in Polymer Science, 2010, 35(5):623-686.
    Mallakpour S, M Kolahdoozan. Synthesis and properties of novel soluble aromatic polyamides derived from 5-(2-phthalimidyl-3-methyl butanoylamino) isophthalic acid and aromatic diamines[J]. Reactive and Functional Polymers, 2008, 68(1):91-96.
    Bazzar M, M Ghaemy, R Alizadeh. Novel fluorescent light-emitting polymer composites bearing 1,2,4-triazole and quinoxaline moieties:Reinforcement and thermal stabilization with silicon carbide nanoparticles by epoxide functionalization[J]. Polymer Degradation and Stability, 2012, 97(9):1690-1703.
    Song R, D Yang, L He. Preparation of semi-aromatic polyamide(PA)/multi-wall carbon nanotube(MWCNT) composites and its dynamic mechanical properties[J]. Journal of Materials Science, 2008, 43(4):1205-1213.
    Shabanian M, M Hajibeygi. Magnetic heat resistant poly(amide-imide) nanocomposite derived from bisphenol A:Synthesis and properties[J]. Polymer Composites, 2013, 34(10):1682-1689.
    Faghihi K, M Hajibeygi, M Shabanian. Novel thermally stable poly(amide-imide)s containing dibenzalacetone moiety in the main chain:Synthesis and characterization[J]. Macromolecular Research, 2010, 18(5):421-428.
    Faghihi K, Shabanian M, Hajibeygi M , et al. Synthesis and characterization of new poly(ether-ester-imide)s as a generation of soluble and thermally stable polymers[J]. Polymer Bulletin, 2010, 66(1):37-49.
    Shabanian M, D Ghanbari. Synthesis of magnesium hydroxide nanofiller and its use for improving thermal properties of new poly(ether-amide)[J]. Journal of Applied Polymer Science, 2013, 127(3):2004-2009.
    Shabbir S, et al. Synthesis, characterization and functionalization of thermally stable hyperbranched polyamide-ethers based on 6-hydroxy-2,4-bis(4'-nitrobenzamide)pyrimidine[J]. Polymer Degradation and Stability, 2010, 95(4):500-507.
    Shabanian M, Nian-Jun Kang, De-Yi Wang,et al. Synthesis of aromatic-aliphatic polyamide acting as adjuvant in polylactic acid(PLA)/ammonium polyphosphate(APP) system[J]. Polymer Degradation and Stability, 2013, 98(5):1036-1042.
    Zulfiqar S, M Ishaq, M Ilyas Sarwar. Synthesis and characterization of soluble aromatic-aliphatic polyamide[J]. Advances in Polymer Technology, 2010, 29(4):300-308.
    Zulfiqar S, Zahoor Ahmad, Muhammad Ishaq, et al. Aromatic-aliphatic polyamide/montmorillonite clay nanocomposite materials:Synthesis, nanostructure and properties[J]. Materials Science and Engineering:A, 2009, 525(1-2):30-36.
    Sarwar M I, S Zulfiqar, Z Ahmad. Properties of polyamide-zirconia nanocomposites prepared from sol-gel technique[J]. Polymer Composites, 2009, 30(1):95-100.
    Zulfiqar S, Ayesha K, Muhammad R, et al. Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocomposites[J]. Applied Surface Science, 2008, 255(5):2080-2086.
    Shabanian M, Basaki N. New photosensitive semi aramid/organoclay nanocomposite containing cinnamoyl groups:Synthesis and characterization[J]. Composites Part B:Engineering, 2013, 52:224-232.
    Zulfiqar, S, Ishaq M, Sarwar M I. Effect of surface modification of montmorillonite on the properties of aromatic polyamide/clay nanocomposites[J]. Surface and Interface Analysis, 2008, 40(8):1195-1201.
    Zhao H, et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. Journal of Membrane Science, 2014. 450(0):249-256.
    Mallakpour S, Hatami M. Production and evaluation of the surface properties of chiral poly(amide-imide)/TiO2 nanocomposites containing L-phenylalanine units[J]. Progress in Organic Coatings, 2012,74(3):564-571.
    Pardal F, Slim Salhi, Brigitte Rousseau, et al. Unsaturated polyamides from bio-Based z-octadec-9-enedioic acid[J]. Macromolecular Chemistry and Physics, 2008, 209(1):64-74.
    Galià M, Lucas Montero de Espinosa, Joan Carles Ronda,? et al. Vegetable oil-based thermosetting polymers[J]. European Journal of Lipid Science and Technology, 2010, 112(1):87-96.
    Zuo J, Shaojun Li, Laziz Bouzidi, et al. Thermoplastic polyester amides derived from oleic acid[J]. Polymer, 2011, 52(20):4503-4516.
    Roumanet P J, Lafleche F, Jarroux N, et al. Novel aliphatic polyesters from an oleic acid based monomer. Synthesis, epoxidation, cross-linking and biodegradation[J]. European Polymer Journal, 2013, 49(4):813-822.
    Xia Y, R C Larock. Vegetable oil-based polymeric materials:synthesis, properties, and applications[J]. Green Chemistry, 2010, 12(11):1893-1909.
    McEwen, J H a W. Azelaic acid[J]. Organic Synthese, 1943, 2:53-54.
    Faghihi K, Zamani K. Synthesis and properties of novel flame-retardant poly(amide-imide)s containing phosphine oxide moieties in main chain by microwave irradiation[J]. Journal of Applied Polymer Science, 2006, 101(6):4263-4269.
    Shi Y, Takashi Kashiwag, Richard N Walters, et al. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method:Enhanced flame retardant and mechanical properties[J]. Polymer, 2009, 50(15):3478-3487.
    Kiliaris P, Papaspyrides C D. Polymer/layered silicate(clay) nanocomposites:An overview of flame retardancy[J]. Progress in Polymer Science, 2010, 35(7):902-958.
    Yu G, Gong J L , Wang S, et al. Etching effects of ethanol on multi-walled carbon nanotubes[J]. Carbon, 2006, 44(7):1218-1224.
    Kashiwagi T, Grulke Eric A , Jenny Hilding, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites[J]. Polymer, 2004, 45(12):4227-4239.
  • 加载中
计量
  • 文章访问数:  557
  • HTML全文浏览量:  56
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-03
  • 录用日期:  2015-11-10
  • 修回日期:  2015-10-10
  • 刊出日期:  2015-10-28

目录

    /

    返回文章
    返回