留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨片对环氧树脂的热学、力学和电学性能影响

Subhra Gantayat Gyanaranjan Prusty Dibya Ranjan Rout Sarat K Swain

Subhra Gantayat, Gyanaranjan Prusty, Dibya Ranjan Rout, Sarat K Swain. 石墨片对环氧树脂的热学、力学和电学性能影响. 新型炭材料, 2015, 30(5): 432-437. doi: 10.1016/S1872-5805(15)60200-1
引用本文: Subhra Gantayat, Gyanaranjan Prusty, Dibya Ranjan Rout, Sarat K Swain. 石墨片对环氧树脂的热学、力学和电学性能影响. 新型炭材料, 2015, 30(5): 432-437. doi: 10.1016/S1872-5805(15)60200-1
Subhra Gantayat, Gyanaranjan Prusty, Dibya Ranjan Rout, Sarat K Swain. Expanded graphite as a filler for epoxy matrix composites to improve their thermal, mechanical and electrical properties. New Carbon Mater., 2015, 30(5): 432-437. doi: 10.1016/S1872-5805(15)60200-1
Citation: Subhra Gantayat, Gyanaranjan Prusty, Dibya Ranjan Rout, Sarat K Swain. Expanded graphite as a filler for epoxy matrix composites to improve their thermal, mechanical and electrical properties. New Carbon Mater., 2015, 30(5): 432-437. doi: 10.1016/S1872-5805(15)60200-1

石墨片对环氧树脂的热学、力学和电学性能影响

doi: 10.1016/S1872-5805(15)60200-1
详细信息
    通讯作者:

    Sarat K Swain.E-mail:swainsk2@yahoo.co.in

  • 中图分类号: TB332

Expanded graphite as a filler for epoxy matrix composites to improve their thermal, mechanical and electrical properties

  • 摘要: 采用溶液技术制备出膨胀石墨增强环氧树脂复合材料。对石墨进行化学改性以提高与环氧树脂的相容性。采用XRD、FE-SEM和HR-TEM对环氧树脂/膨胀石墨复合材料进行表征。与环氧树脂相比,添加质量分数9%膨胀石墨后,该复合材料的热分解温度从340℃升高至480℃,抗张应力提高30%,导电率由10-15增加至10-5数量级。热学、力学和电学性能的显著提高,主要归因于膨胀石墨纳米片在环氧树脂基体中的良好分散性,从而可用于广泛的应用领域。
  • Swain S K, Isayev A I. PA6/clay nano-composites by continuous sonication process[J]. Appl Polym Sci, 2009, 114:2378-2387.
    Sahoo P K, Samal R, Swain S K, et al. Synthesis of poly(butyl acrylate)/sodium silicate nanocomposite fire retardant[J]. Eur Polym J, 2008, 44:3522-3528.
    Lapshine S, Swain S K, Isayev A I. Ultrasound aided extrusion process for preparation of polyolefin-clay nanocomposites[J]. Polym Eng Sci, 2008, 48:1584-1591.
    Swain S K, Isayev A I. Effect of ultrasound on HDPE/clay nanocomposites:Rheology, structure and properties[J]. Polymer, 2007, 48:281-289.
    Prusty G, Swain S K. Synthesis and characterization of conducting gas barrier polyacrylonitrile/graphite nanocomposites[J]. Polym Compos, 2011, 32:1336-1342.
    Prusty G, Swain S K. Dispersion of expanded graphite as nanoplatelets in a copolymer matrix and its effect on thermal stability, electrical conductivity and permeability[J]. New Carbon Materials, 2012, 27:271-277.(Prusty G, Swain S K.纳米石墨片/共聚物复合材料及其耐热、导电和气密性[J]. 新型炭材料, 2012, 27:271-277.)
    Ishigure Y, Iijima S, Ito H, et al. Electrical and elastic properties of conductor-polymer composites[J]. J Mater Sci, 1999, 34:2979-2985.
    Pinto G, Martin A J. Conducting aluminium-filled nylon 6 composites[J]. Polym Compos, 2001, 22:65-70.
    Roldughin V I, Vysotskii V V. Percolation properties of metal filled polymer films, structure and mechanisms of conductivity[J]. Prog Org Coat, 2000, 39:81-100.
    Gabriel P, Cipriano L G, Ana J M. Polymer composites prepared by compression molding of a mixture of carbon black and nylon 6 powder[J]. Polym Comp, 1999, 20:804-808.
    Du F, Scogna R C, Zhou W, et al. Nanotube networks in polymer nanocomposites:Rheology and electrical conductivity[J]. Macromolecules, 2004, 37:9048-9055.
    EI-Tantawy F, Abdel-Aal N, Al-Hajry A, et al. New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites[J]. Polym Compos, 2008, 29:125-132.
    EI-Tantawy F. Plasticized/graphite reinforced phenolic resin composites and their application potential[J]. J Appl Polym Sci, 2007, 104:697-709.
    EI-Tantawy F. Development of novel functional conducting elastomer blends containing butyl rubber and low-density polyethylene for current switching, temperature sensor, and EMI shielding effectiveness applications[J]. J Appl Polym Sci, 2005, 97:1125-1138.
    Chen G, Weng W, Wu D, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J]. Carbon, 2004, 42:753-759.
    Chen G, Weng W, Wu D C. PMMA/graphite nanosheets composite and its conducting properties[J]. Eur Polym J, 2003, 39:2329-2335.
    Mamunya E P, Davidenko V V, Lebedev E V. Effect of polymer-filler interface interactions on percolation conductivity of thermoplastics filled with carbon black[J]. Compos Inter, 1996, 4:169-176.
    Chen G H, Wu D J, Weng W G, et al. Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization[J]. Polym Int, 2001, 50:980-985.
    Kim I H, Jeong Y G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity[J]. J Polym Sci:Part B Phys, 2010, 48:850-858.
    Xiao M, Sun L, Liu J, et al. Synthesis and properties of polystyrene/graphite nanocomposites[J]. Polymer, 2002, 43:2245-2248.
    Aiping Yu, Palanisamy R, Mikhail E I, et al. Graphite nanoplatelet-epoxy composite thermal interface materials[J]. The Journal of Physical Chemistry C, 2007, 111:7565-7569.
    Swain S K, Prusty G, Ray A S, et al. Dispersion of nanoplatelets of graphite on PMMA matrix by in situ polymerisation technique[J]. Journal of Experimental Nanoscience, 2014, 9:240-248.
    Kisku S K, Swain S K. Synthesis and characterization of chitosan/boron nitride composite[J]. Journal of the American Ceramic Society, 2012, 95:2753-2757.
    Prusty G, Das R, Swain S K. Influence of functionalized single-walled carbon nanotubes on morphology, conducting and oxygen barrier properties of poly(acrylonitrile-co-starch)[J]. Composites:Part B, 2014, 62:236-241.
    Xiao P, Xiao M, Gong K. Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique[J]. Polymer, 2001, 42:4813-4816.
    Prusty G, Swain S K.Dispersion of ZrO2 nanoparticles in polyacrylonitrile:Preparation of thermally-resistant electrically-conductive oxygen barrier nanocomposites[J]. Material Science in Semiconductor Processing, 2013, 16:2039-2043.
    Ma P C, Siddiqui N A, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:A review[J]. Composites:Part A, 2010, 41:1345-1367.
  • 加载中
计量
  • 文章访问数:  446
  • HTML全文浏览量:  70
  • PDF下载量:  745
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-05
  • 录用日期:  2015-11-10
  • 修回日期:  2015-10-08
  • 刊出日期:  2015-10-28

目录

    /

    返回文章
    返回