留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉曼光谱分析炭纤维表面的微观结构

任桂知 陈淙洁 邓李慧 全海宇 吕永根 吴琪琳

任桂知, 陈淙洁, 邓李慧, 全海宇, 吕永根, 吴琪琳. 拉曼光谱分析炭纤维表面的微观结构. 新型炭材料, 2015, 30(5): 476-480. doi: 10.1016/S1872-5805(15)60202-5
引用本文: 任桂知, 陈淙洁, 邓李慧, 全海宇, 吕永根, 吴琪琳. 拉曼光谱分析炭纤维表面的微观结构. 新型炭材料, 2015, 30(5): 476-480. doi: 10.1016/S1872-5805(15)60202-5
REN Gui-zhi, CHEN Cong-jie, DENG Li-hui, QUAN Hai-yu, LU Yong-gen, WU Qi-lin. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy. New Carbon Mater., 2015, 30(5): 476-480. doi: 10.1016/S1872-5805(15)60202-5
Citation: REN Gui-zhi, CHEN Cong-jie, DENG Li-hui, QUAN Hai-yu, LU Yong-gen, WU Qi-lin. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy. New Carbon Mater., 2015, 30(5): 476-480. doi: 10.1016/S1872-5805(15)60202-5

拉曼光谱分析炭纤维表面的微观结构

doi: 10.1016/S1872-5805(15)60202-5
基金项目: 国家自然科学基金(60975059);同济大学先进土木工程材料教育部重点实验室(201301);上海市教育委员会科研创新重点项目(14ZZ069).
详细信息
  • 中图分类号: TQ342.+74

Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy

Funds: National Natural Science Foundation of China(60975059);Key Laboratory of Advanced Civil Engineering Materials,Tongji University(201301);Research and Innovation Project of Shanghai Municipal Education Commission(14ZZ069).
  • 摘要: 采用拉曼光谱技术研究了PAN基炭纤维表面微观结构的异质性。借助于自制的旋装装置,实现了单根炭纤维纤维的旋转,利用拉曼面扫描技术获得了纤维整个外表面的拉曼光谱。通过分峰数据处理,得到II/IG、IA/IG、IDi/IG与ID/IG的分布,发现这些结构参数具有较大的波动性,说明炭纤维表面微观结构是不均匀的。进一步也计算出纤维表面的晶粒尺寸La在0.7-2.9 nm间变化,结构缺陷有沿着纤维轴向取向的趋势。通过拉曼旋转扫描,揭示出了炭纤维表面的复杂微观结构。
  • Jones J B, Barr J B, Smith R E. Analysis of flaws in high-strength carbon fibres from mesophase pitch[J]. Journal of Materials Science, 1980, 15(10):2455-2465.
    Burnay S, Sharp J. Defect structure of PAN-based carbon fibres[J]. Journal of Microscopy, 2011, 97(1-2):153-163.
    Cantwell W, Morton J. The significance of damage and defects and their detection in composite materials:A review[J]. The Journal of Strain Analysis for Engineering Design, 1992, 27(1):29-42.
    Kaushik V K, Bhardwaj A. Characterization of carbon fibre surfaces using electron spectroscopy for chemical analysis[J]. Polymer Testing, 1994, 13(4):355-362.
    Li W, Long D, Miyawaki J, et al. Structural features of polyacrylonitrile-based carbon fibers[J]. Journal of materials science, 2011, 47(2):919-928.
    Montes-Morán M A, Young R J. Raman spectroscopy study of high-modulus carbon fibres:effect of plasma-treatment on the interfacial properties of single-fibre-epoxy composites:Part II:Characterisation of the fibre-matrix interface[J]. Carbon, 2002, 40(6):857-875.
    Wang F, Li R, Sun X, et al. Confocal Raman spectromicroscopy for tin-core/carbon-shell nanowire heterostructure[J]. Applied Surface Science, 2011, 258(1):394-398.
    Kim C, Park S-H, Cho J-I, et al. Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning[J]. Journal of Raman Spectroscopy, 2004, 35(11):928-933.
    Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742.
    Hao X, Yonggen L, Mouhua W, et al. Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber[J]. Carbon, 2012, 52:427-439.
    Gao A, Su C, Luo S, et al. Densification mechanism of polyacrylonitrile-based carbon fiber during heat treatment[J]. Journal of Physics and Chemistry of Solids, 2011, 72(10):1159-1164.
    Kong K, Deng L, Kinloch I A, et al. Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor[J]. Journal of materials science, 2012:1-9.
    Kobayashi T, Sumiya K, Fujii Y, et al. Stress concentration in carbon fiber revealed by the quantitative analysis of X-ray crystallite modulus and Raman peak shift evaluated for the variously-treated monofilaments under constant tensile forces[J]. Carbon, 2013, 53:29-37.
    Kobayashi T, Sumiya K, Fukuba Y, et al. Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements[J]. Carbon, 2011, 49(5):1646-1652.
    Tuinstra F, Koenig J. Characterization of graphite fiber surfaces with Raman spectroscopy[J]. Journal of Composite Materials, 1970, 4(4):492-499.
    Nemanich R, Solin S. First-and second-order Raman scattering from finite-size crystals of graphite[J]. Physical Review B, 1979, 20(2):392.
    Vollebregt S, Ishihara R, Tichelaar F D, et al. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers[J]. Carbon, 2012, 50(10):3542-3554.
    Katagiri G, Ishida H, Ishitani A. Raman spectra of graphite edge planes[J]. Carbon, 1988, 26(4):565-571.
    Wang Y, Alsmeyer D C, Mccreery R L. Raman spectroscopy of carbon materials:structural basis of observed spectra[J]. Chemistry of Materials, 1990, 2(5):557-563.
    Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970, 53:1126.
    Ebner E, Burow D, Panke J, et al. Carbon blacks for lead-acid batteries in micro-hybrid applications-Studied by transmission electron microscopy and Raman spectroscopy[J]. Journal of Power Sources, 2013, 222(0):554-560.
    Lespade P, Al-Jishi R, Dresselhaus M. Model for Raman scattering from incompletely graphitized carbons[J]. Carbon, 1982, 20(5):427-431.
    Wu Q, Pan N, Deng K, et al. Thermogravimetry-mass spectrometry on the pyrolysis process of Lyocell fibers with and without catalyst[J]. Carbohydrate Polymers, 2008, 72(2):222-228.
  • 加载中
计量
  • 文章访问数:  469
  • HTML全文浏览量:  64
  • PDF下载量:  772
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-08
  • 录用日期:  2015-11-10
  • 修回日期:  2015-10-08
  • 刊出日期:  2015-10-28

目录

    /

    返回文章
    返回