留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔炭材料的设计合成及CO2吸附分离研究进展

张向倩 李文翠 陆安慧

张向倩, 李文翠, 陆安慧. 多孔炭材料的设计合成及CO2吸附分离研究进展. 新型炭材料, 2015, 30(6): 481-501. doi: 10.1016/S1872-5805(15)60203-7
引用本文: 张向倩, 李文翠, 陆安慧. 多孔炭材料的设计合成及CO2吸附分离研究进展. 新型炭材料, 2015, 30(6): 481-501. doi: 10.1016/S1872-5805(15)60203-7
ZHANG Xiang-qian, LI Wen-cui, LU An-hui. Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater., 2015, 30(6): 481-501. doi: 10.1016/S1872-5805(15)60203-7
Citation: ZHANG Xiang-qian, LI Wen-cui, LU An-hui. Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater., 2015, 30(6): 481-501. doi: 10.1016/S1872-5805(15)60203-7

多孔炭材料的设计合成及CO2吸附分离研究进展

doi: 10.1016/S1872-5805(15)60203-7
基金项目: 国家自然科学基金(21473021);国家重点基础研究发展计划(973计划)项目(2103CB934104);中央高校基本科研业务费专项资金(DUT14ZD209).
详细信息
    作者简介:

    张向倩,博士研究生.E-mail:xiangqianzhang@dlut.edu.cn

    通讯作者:

    陆安慧,教授.E-mail:anhuilu@dlut.edu.cn

  • 中图分类号: TQ127.1+1

Designed porous carbon materials for efficient CO2 adsorption and separation

Funds: National Natural Science Foundation of China (21473021);National Program on Key Basic Research Project (2013CB934104);Fundamental Research Funds for the Central Universities (DUT14ZD209).
  • 摘要: 温室效应日渐显著,CO2的捕集与利用已成为一个全球性的科学研究热点。碳质吸附材料因其结构的可设计性、孔隙结构发达和化学性质稳定等特点,在气体分离领域发挥着重要的作用。本文主要介绍了近年来多孔炭材料在CO2吸附分离领域的研究进展情况,着重介绍了提高CO2吸附分离效率的主要方法与策略,并对碳质吸附材料未来的发展趋势进行了评述。
  • Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angewandte Chemie International Edition, 2011, 50(49): 11586-11596.
    Lu A H, Hao G P. Porous materials for carbon dioxide capture[J]. Annual Reports A: Inorganic Chemistry, 2013, 109: 484-503.
    Lu W, Sculley J P, Yuan D, et al. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas[J]. Angewandte Chemie International Edition, 2012, 51(30): 7480-7484.
    Lu A H, Dai S. Porous materials for carbon dioxide capture [M]. Springer: Heidelberg, Germany, 2014.
    Shen W Z, Fan W B. Nitrogen-containing porous carbons: Synthesis and application[J]. Journal of Materials Chemistry A, 2013, 1(4), 999-1013.
    Wang J, Huang L, Yang R, et al. Recent advances in solid sorbents for CO2 capture and new development trends[J]. Energy & Environmental Science, 2014, 7: 3478-3518.
    White R J, Budarin V, Luque R, et al. Tuneable porous carbonaceous materials from renewable resources[J]. Chemical Society Reviews, 2009, 38(12): 3401-3418.
    Gong Y, Wei Z, Wang J, et al. Design and fabrication of hierarchically porous carbon with a template-free method[J]. Scientific Reports, 2014, 4: 6349.
    Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production-a review[J]. Renewable and Sustainable Energy Reviews, 2007, 11: 1966-2005.
    Mohamed A R, Mohammadi M, Darzi G N. Preparation of carbon molecular sieve from lignocellulosic biomass: A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(6): 1591-1599.
    Reddy K S K, Al Shoaibi A, Srinivasakannan C. A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits[J]. New Carbon Materials, 2012, 27(5): 344-351. (Reddy K S K, Al Shoaibi A, Srinivasakaman C. 海枣核CO2活化制备活性炭及其结构、吸附性能[J]. 新型炭材料, 2012, 27(5): 344-351.)
    Olivares Marín M, Maroto Valer M M. Development of adsorbents for CO2 capture from waste materials: A review[J]. Greenhouse Gases: Science and Technology, 2012, 2(1): 20-35.
    Wang R, Wang P, Yan X, et al. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5800-5806.
    Xing W, Liu C, Zhou Z, et al. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy & Environmental Science, 2012, 5(6): 7323-7327.
    Titirici M M, Antonietti M, Baccile N. Hydrothermal carbon from biomass: A comparison of the local structure from poly-to monosaccharides and pentoses/hexoses[J]. Green Chemistry, 2008, 10(11): 1204-1212.
    Titirici M M, White R J, Falco C, et al. Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage[J]. Energy & Environmental Science, 2012, 5(5): 6796-6822.
    Sevilla M, Falco C, Titirici M M, et al. High-performance CO2 sorbents from algae[J]. RSC Advances, 2012, 2(33): 12792-12797.
    Wei H, Deng S, Hu B, et al. Granular bamboo-derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores[J]. Chem Sus Chem, 2012, 5(12): 2354-2360.
    Heidari A, Younesi H, Rashidi A, et al. Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment[J]. Chemical Engineering Journal, 2014, 254: 503-513.
    Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science, 2011, 4(5): 1765-1771.
    Zhu B, Qiu K, Shang C, et al. Naturally derived porous carbon with selective metal-and/or nitrogen-doping for efficient CO2 capture and oxygen reduction[J]. Journal of Materials Chemistry A, 2015, 3(9): 5212-5222.
    Plaza M G, Pevida C, Arias B, et al. Development of low-cost biomass-based adsorbents for postcombustion CO2 capture[J]. Fuel, 2009, 88(12): 2442-2447.
    Parshetti G K, Chowdhury S, Balasubramanian R. Plant derived porous graphene nanosheets for efficient CO2 capture[J]. RSC Advances, 2014, 4(84): 44634-44643.
    Plaza M G, Pevida C, Martín C F, et al. Developing almond shell-derived activated carbons as CO2 adsorbents[J]. Separation and Purification Technology, 2010, 71(1): 102-106.
    Plaza M G, González A S, Pevida C, et al. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications[J]. Applied Energy, 2012, 99: 272-279.
    Ello A S, de Souza L K C, Trokourey A, et al. Coconut shell-based microporous carbons for CO2 capture[J]. Microporous and Mesoporous Materials, 2013, 180: 280-283.
    Song J, Shen W, Wang J, et al. Superior carbon-based CO2 adsorbents prepared from poplar anthers[J]. Carbon, 2014, 69: 255-263.
    Wang J, Heerwig A, Lohe M R, et al. Fungi-based porous carbons for CO2 adsorption and separation[J]. Journal of Materials Chemistry, 2012, 22(28): 13911-13913.
    Shen W, He Y, Zhang S, et al. Yeast-based microporous carbon materials for carbon dioxide capture[J]. Chem Sus Chem, 2012, 5(7): 1274-1279.
    Fan X, Zhang L, Zhang G, et al. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture[J]. Carbon, 2013, 61: 423-430.
    Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials[J]. Advanced Materials, 2006, 18(14): 1793-1805.
    Ma T Y, Liu L, Yuan Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews, 2013, 42(9): 3977-4003.
    Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. The Journal of Physical Chemistry B, 1999, 103(37): 7743-7746.
    Hu Y S, Adelhelm P, Smarsly B M, et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability[J]. Advanced Functional Materials, 2007, 17(12): 1873-1878.
    Lu A H, Smått J H, Lindén M. Combined surface and volume templating of highly porous nanocast carbon monoliths[J]. Advanced Functional Materials, 2005, 15(5): 865-871.
    Liu N, Yin L, Wang C, et al. Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template[J]. Carbon, 2010, 48(12): 3579-3591.
    Sánchez-Sánchez A, Suárez-García F, Martínez-Alonso A, et al. Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons: Acidic and basic site interactions[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21237-21247.
    Vinu A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content[J]. Advanced Functional Materials, 2008, 18(5): 816-827.
    Li Q, Yang J, Feng D, et al. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture[J]. Nano Research, 2010, 3(9): 632-642.
    Nishihara H, Kyotani T. Templated nanocarbons for energy storage[J]. Advanced Materials, 2012, 24(33): 4473-4498.
    Pachfule P, Biswal B P, Banerjee R. Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis[J]. Chemistry-A European Journal, 2012, 18(36): 11399-11408.
    DENG Hong-gui, JIN Shuang-ling, ZHAN Liang, et al. Synthesis of porous carbons derived from metal-organic coordination polymers and their adsorption performance for carbon dioxide[J]. New Carbon Materials, 2012, 27(3): 194-199. (邓洪贵, 金双铃, 詹 亮, 等. 以金属框架有机物为模板合成微孔炭及其对CO2的吸附性能[J]. 新型炭材料, 2012, 27(3): 194-199.)
    Wang Q, Xia W, Guo W, et al. Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors[J]. Chemistry-An Asian journal, 2013, 8(8): 1879-1885.
    Adelhelm P, Hu Y S, Chuenchom L, et al. Generation of hierarchical meso-and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates[J]. Advanced Materials, 2007, 19(22): 4012-4017.
    Gierszal K P, Jaroniec M. Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template[J]. Journal of the American Chemical Society, 2006, 128(31): 10026-10027.
    TANG Zhi-hong, HAN Zhuo, YANG Guang-zhi, et al. Preparation of nanoporous carbons with hierarchical pore structure for CO2 capture[J]. New Carbon Materials, 2013, 28(1): 55-60. (唐志红, 韩 卓, 杨光智, 等. CO2捕集用具有多级孔结构纳米孔炭的制备[J]. 新型炭材料, 2013, 28(1): 55-60.)
    Morishita T, Soneda Y, Tsumura T, et al. Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors[J]. Carbon, 2006, 44(12): 2360-2367.
    Meng L Y, Park S J. MgO-templated porous carbons-based CO2 adsorbents produced by KOH activation[J]. Materials Chemistry and Physics, 2012, 137(1): 91-96.
    Han B H, Zhou W, Sayari A. Direct preparation of nanoporous carbon by nanocasting[J]. Journal of the American Chemical Society, 2003, 125(12): 3444-3445.
    Meng L Y, Park S J. Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon[J]. Journal of Colloid and Interface Science, 2012, 366(1): 125-129.
    Zhang S, Chen L, Zhou S, et al. Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support[J]. Chemistry of Materials, 2010, 22(11): 3433-3440.
    Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials, 2006, 18(16): 2073-2094.
    Hoheisel T N, Schrettl S, Szilluweit R, et al. Nanostructured carbonaceous materials from molecular precursors[J]. Angewandte Chemie International Edition, 2010, 49(37): 6496-6515.
    Silva A M T, Machado B F, Figueiredo J L, et al. Controlling the surface chemistry of carbon xerogels using HNO3-hydrothermal oxidation[J]. Carbon, 2009, 47(7): 1670-1679.
    Stein A, Wang Z, Fierke M A. Functionalization of porous carbon materials with designed pore architecture[J]. Advanced Materials, 2009, 21(3): 265-293.
    Liang C, Hong K, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie International Edition, 2004, 43(43): 5785-5789.
    Liang C, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. Journal of the American Chemical Society, 2006, 128(16): 5316-5317.
    Saha D, Deng S. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon[J]. Journal of Colloid and Interface Science, 2010, 345(2): 402-409.
    Wei J, Zhou D, Sun Z, et al. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors[J]. Advanced Functional Materials, 2013, 23(18): 2322-2328.
    Liu L, Wang F Y, Shao G S, et al. A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure[J]. Carbon, 2010, 48(7): 2089-2099.
    Zhao X, Wang A, Yan J, et al. Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons[J]. Chemistry of Materials, 2010, 22(19): 5463-5473.
    Hao G P, Li W C, Wang S, et al. Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores[J]. Carbon, 2011, 49(12): 3762-3772.
    Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29): 11378-11388.
    Hao G P, Jin Z Y, Sun Q, et al. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties[J]. Energy & Environmental Science, 2013, 6(12): 3740-3747.
    Feng S, Li W, Shi Q, et al. Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture[J]. Chemical Communications, 2014, 50(3): 329-331.
    Li W, Zhao D. An overview of the synthesis of ordered mesoporous materials[J]. Chemical Communications, 2013, 49(10): 943-946.
    Wickramaratne N P, Jaroniec M. Activated carbon spheres for CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2013, 5(5): 1849-1855.
    Wang S, Li W C, Hao G P, et al. Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry[J]. Journal of the American Chemical Society, 2011, 133(39): 15304-15307.
    Wang S, Li W C, Zhang L, et al. Polybenzoxazine-based monodisperse carbon spheres with low-thermal shrinkage and their CO2 adsorption properties[J]. Journal of Materials Chemistry A, 2014, 2(12): 4406-4412.
    Zeng Q, Wu D, Zou C, et al. Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres[J]. Chemical Communications, 2010, 46(32): 5927-5929.
    Han F D, Bai Y J, Liu R, et al. Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in lithium-ion batteries[J]. Advanced Energy Materials, 2011, 1(5): 798-801.
    Jalilov A S, Ruan G, Hwang C C, et al. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1376-1382.
    Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science, 1989, 24(9): 3221-3227.
    Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C. Inter-and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents[J]. Langmuir, 2008, 24(6): 2820-2825.
    Wan Y, Qian X, Jia N, et al. Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon[J]. Chemistry of Materials, 2007, 20(3): 1012-1018.
    Sepehri S, Garcia B B, Zhang Q, et al. Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen[J]. Carbon, 2009, 47(6): 1436-1443.
    Hao G P, Li W C, Qian D, et al. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture[J]. Advanced Materials, 2010, 22(7): 853-857.
    Gu J M, Kim W S, Hwang Y K, et al. Template-free synthesis of N-doped porous carbons and their gas sorption properties[J]. Carbon, 2013, 56: 208-217.
    Shen W, Zhang S, He Y, et al. Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture[J]. Journal of Materials Chemistry, 2011, 21(36): 14036-14040.
    Zhang S, Miran M S, Ikoma A, et al. Protic ionic liquids and salts as versatile carbon precursors[J]. Journal of the American Chemical Society, 2014, 136(5): 1690-1693.
    Jin Z Y, Lu A H, Xu Y Y, et al. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors[J]. Advanced Materials, 2014, 26(22): 3700-3705.
    Zhang S, Dokko K, Watanabe M. Direct synthesis of nitrogen-doped carbon materials from protic ionic liquids and protic salts: structural and physicochemical correlations between precursor and carbon[J]. Chemistry of Materials, 2014, 26(9): 2915-2926.
    Paraknowitsch J P, Thomas A. Functional carbon materials from ionic liquid precursors[J]. Macromolecular Chemistry and Physics, 2012, 213(10-11): 1132-1145.
    Fechler N, Fellinger T P, Antonietti M. "Salt templating": A simple and sustainable pathway toward highly porous functional carbons from ionic liquids[J]. Advanced Materials, 2013, 25(1): 75-79.
    Wang X, Dai S. Ionic liquids as versatile precursors for functionalized porous carbon and carbon-oxide composite materials by confined carbonization[J]. Angewandte Chemie International Edition, 2010, 49(37): 6664-6668.
    Lee J S, Wang X, Luo H, et al. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids[J]. Journal of the American Chemical Society, 2009, 131(13): 4596-4597.
    Paraknowitsch J P, Zhang J, Su D, et al. Ionic liquids as precursors for nitrogen-doped graphitic carbon[J]. Advanced Materials, 2010, 22(1): 87-92.
    Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003 (1): 70-71.
    Francisco M, van den Bruinhorst A, Kroon M C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents[J]. Angewandte Chemie International Edition, 2013, 52(11): 3074-3085.
    Carriazo D, Gutiérrez M C, Ferrer M L, et al. Resorcinol-based deep eutectic solvents as both carbonaceous precursors and templating agents in the synthesis of hierarchical porous carbon monoliths[J]. Chemistry of Materials, 2010, 22(22): 6146-6152.
    Patino J, Gutiérrez M C, Carriazo D, et al. Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2-CH4 gas mixtures[J]. Energy & Environmental Science, 2012, 5(9): 8699-8707.
    Patino J, Gutiérrez M C, Carriazo D, et al. DES assisted synthesis of hierarchical nitrogen-doped carbon molecular sieves for selective CO2 versus N2 adsorption[J]. Journal of Materials Chemistry A, 2014, 2(23): 8719-8729.
    Gutiérrez M C, Rubio F, del Monte F. Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon-carbon nanotube composites[J]. Chemistry of Materials, 2010, 22(9): 2711-2719.
    Leventis N, Sotiriou-Leventis C, Chandrasekaran N, et al. Multifunctional polyurea aerogels from isocyanates and water. a structure-property case study[J]. Chemistry of Materials, 2010, 22(24): 6692-6710.
    Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, et al. One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons[J]. Journal of Materials Chemistry, 2010, 20(43): 9666-9678.
    Gao X, Zou X, Ma H, et al. Highly selective and permeable porous organic framework membrane for CO2 capture[J]. Advanced Materials, 2014, 26(22): 3644-3648.
    Ma T Y, Dai S, Jaroniec M, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. Journal of the American Chemical Society, 2014, 136(39): 13925-13931.
    Amali A J, Sun J K, Xu Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chemical Communications, 2014, 50(13): 1519-1522.
    Zhang W, Wu Z Y, Jiang H L, et al. Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis[J]. Journal of the American Chemical Society, 2014, 136(41): 14385-14388.
    Fracaroli A M, Furukawa H, Suzuki M, et al. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water[J]. Journal of the American Chemical Society, 2014, 136(25): 8863-8866.
    Hu M, Reboul J, Furukawa S, et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. Journal of the American Chemical Society, 2012, 134(6): 2864-2867.
    Chaikittisilp W, Hu M, Wang H, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications, 2012, 48(58): 7259-7261.
    Yang S J, Kim T, Im J H, et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chemistry of Materials, 2012, 24(3): 464-470.
    Lim S, Suh K, Kim Y, et al. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks[J]. Chemical Communications, 2012, 48(60): 7447-7449.
    Srinivas G, Krungleviciute V, Guo Z X, et al. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume[J]. Energy & Environmental Science, 2014, 7(1): 335-342.
    Ben T, Li Y, Zhu L, et al. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF)[J]. Energy & Environmental Science, 2012, 5(8): 8370-8376.
    Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504.
    Chmiola J, Largeot C, Taberna P L, et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science, 2010, 328(5977): 480-483.
    Presser V, McDonough J, Yeon S H, et al. Effect of pore size on carbon dioxide sorption by carbide derived carbon[J]. Energy & Environmental Science, 2011, 4(8): 3059-3066.
    Zhang Z, Zhou J, Xing W, et al. Critical role of small micropores in high CO2 uptake[J]. Physical Chemistry Chemical Physics, 2013, 15(7), 2523-2529.
    Yu J, Guo M, Muhammad F, et al. One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol-urea-formaldehyde resin for CO2 capture[J]. Carbon, 2014, 69: 502-514.
    Yu J, Guo M, Muhammad F, et al. Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol-melamine-formaldehyde resin[J]. Microporous and Mesoporous Materials, 2014, 190: 117-127.
    Jin Z Y, Xu Y Y, Sun Q, et al. Evidence of microporous carbon nanosheets showing fast kinetics in both gas phase and liquid phase environments[J]. Small, 2015, 11(38): 5151-5156.
    Qian D, Lei C, Wang E M, et al. A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity[J]. Chem Sus Chem, 2014, 7(1): 291-298.
    Liu L, Deng Q F, Hou X X, et al. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(31): 15540-15548.
    Zhang X, Lin D, Chen W. Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO2 adsorption[J]. RSC Advances, 2015, 5(56): 45136-45143.
    Qian D, Hao G, Li W. Synthesis of a nitrogen-doped porous carbon monolith and its use for CO2 capture[J]. Carbon, 2013, 64: 557-558.
    Thote J A, Iyer K S, Chatti R, et al. In situ nitrogen enriched carbon for carbon dioxide capture[J]. Carbon, 2010, 48(2): 396-402.
    Zhong M, Natesakhawat S, Baltrus J P, et al. Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture[J]. Chemical Communications, 2012, 48(94): 11516-11518.
    Zhao Y, Zhao L, Yao K X, et al. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(37): 19726-19731.
    Nandi M, Okada K, Dutta A, et al. Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation[J]. Chemical Communications, 2012, 48(83): 10283-10285.
    Chen C, Kim J, Ahn W S. Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure[J]. Fuel, 2012, 95: 360-364.
    Wickramaratne N P, Jaroniec M. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres[J]. Journal of Materials Chemistry A, 2013, 1(1): 112-116.
    Bai R, Yang M, Hu G, et al. A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke[J]. Carbon, 2015, 81: 465-473.
    Sevilla M, Valle-Vigón P, Fuertes A B. N-doped polypyrrole-based porous carbons for CO2 capture[J]. Advanced Functional Materials, 2011, 21(14): 2781-2787.
    Przepiórski J, Skrodzewicz M, Morawski A W. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption[J]. Applied Surface Science, 2004, 225(1): 235-242.
    Pevida C, Plaza M G, Arias B, et al. Surface modification of activated carbons for CO2 capture[J]. Applied Surface Science, 2008, 254(22): 7165-7172.
    Plaza M G, Rubiera F, Pis J J, et al. Ammoxidation of carbon materials for CO2 capture[J]. Applied Surface Science, 2010, 256(22): 6843-6849.
    Xia Y, Zhu Y, Tang Y. Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide[J]. Carbon, 2012, 50(15): 5543-5553.
    Liu Y, Wilcox J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons[J]. Environmental Science & Technology, 2012, 46(3): 1940-1947.
    Kumar K V, Müller E A, Rodríguez-Reinoso F. Effect of pore morphology on the adsorption of methane/hydrogen mixtures on carbon micropores[J]. The Journal of Physical Chemistry C, 2012, 116(21): 11820-11829.
    Palmer J C, Moore J D, Roussel T J, et al. Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study[J]. Physical Chemistry Chemical Physics, 2011, 13(9): 3985-3996.
    Liu Y, Wilcox J. Molecular simulation of CO2 adsorption in micro-and mesoporous carbons with surface heterogeneity[J]. International Journal of Coal Geology, 2012, 104: 83-95.
    Lu X, Jin D, Wei S, et al. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: effects of edge-functionalization[J]. Nanoscale, 2015, 7(3): 1002-1012.
    Zhao Y, Liu X, Yao K X, et al. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon[J]. Chemistry of Materials, 2012, 24(24): 4725-4734.
    Xia Y, Zhu Y, Tang Y. Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide[J]. Carbon, 2012, 50(15): 5543-5553.
    Babarao R, Dai S, Jiang D. Nitrogen-doped mesoporous carbon for carbon capture-a molecular simulation study[J]. The Journal of Physical Chemistry C, 2012, 116(12): 7106-7110.
    Gao B, Zhao J, Cai Q, et al. Doping of calcium in C60 fullerene for enhancing CO2 capture and N2O transformation: A theoretical study[J]. The Journal of Physical Chemistry A, 2011, 115(35): 9969-9976.
    Sitthikhankaew R, Chadwick D, Assabumrungrat S, et al. Performance of sodium-impregnated activated carbons toward low and high temperature H2S adsorption[J]. Chemical Engineering Communications, 2014, 201(2): 257-271.
    Bhagiyalakshmi M, Lee J Y, Jang H T. Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption[J]. International Journal of Greenhouse Gas Control, 2010, 4(1): 51-56.
    Bhagiyalakshmi M, Hemalatha P, Ganesh M, et al. A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture[J]. Fuel, 2011, 90(4): 1662-1667.
    Czyzewski A, Kapica J, Moszyński D, et al. On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO[J]. Chemical Engineering Journal, 2013, 226: 348-356.
    Zhang Z, Zhu C, Sun N, et al. One-pot solvent-free synthesis of nitrogen and magnesium codoped mesoporous carbon composites for CO2 capture[J]. The Journal of Physical Chemistry C, 2015, 119(17): 9302-9310.
    Kim Y K, Kim G M, Lee J W. Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture[J]. Journal of Materials Chemistry A, 2015, 3(20): 10919-10927.
    Zhao Y, Liu X, Yao K X, et al. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon[J]. Chemistry of Materials, 2012, 24(24): 4725-4734.
    Qian D, Lei C, Hao G P, et al. Synthesis of hierarchical porous carboappn monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6125-6132.
    Yue M B, Chun Y, Cao Y, et al. CO2 capture by as-prepared SBA-15 with an occluded organic template[J]. Advanced Functional Materials, 2006, 16(13): 1717-1722.
    Zhao L, Bacsik Z, Hedin N, et al. Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose[J]. Chem Sus Chem, 2010, 3(7): 840-845.
    Hwang C C, Jin Z, Lu W, et al. In situ synthesis of polymer-modified mesoporous carbon CMK-3 composites for CO2 sequestration[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4782-4786.
    Zhao Y, Ding H, Zhong Q. Preparation and characterization of aminated graphite oxide for CO2 capture[J]. Applied Surface Science, 2012, 258(10): 4301-4307.
    Koenig S P, Wang L, Pellegrino J, et al. Selective molecular sieving through porous graphene[J]. Nature Nanotechnology, 2012, 7(11): 728-732.
    Liu H, Cooper V R, Dai S, et al. Windowed carbon nanotubes for efficient CO2 removal from natural gas[J]. The Journal of Physical Chemistry Letters, 2012, 3(22): 3343-3347.
  • 加载中
计量
  • 文章访问数:  941
  • HTML全文浏览量:  241
  • PDF下载量:  763
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-05
  • 录用日期:  2016-01-05
  • 修回日期:  2015-11-30
  • 刊出日期:  2015-12-28

目录

    /

    返回文章
    返回