留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以酚醛包覆玻璃纤维为前驱体制备廉价活性炭纤维

韦晓群 李启汉 黎海超 李慧君 陈水挟

韦晓群, 李启汉, 黎海超, 李慧君, 陈水挟. 以酚醛包覆玻璃纤维为前驱体制备廉价活性炭纤维. 新型炭材料, 2015, 30(6): 579-586. doi: 10.1016/S1872-5805(15)60206-2
引用本文: 韦晓群, 李启汉, 黎海超, 李慧君, 陈水挟. 以酚醛包覆玻璃纤维为前驱体制备廉价活性炭纤维. 新型炭材料, 2015, 30(6): 579-586. doi: 10.1016/S1872-5805(15)60206-2
WEI Xiao-qun, LI Qi-han, LI Hai-chao, LI Hui-jun, CHEN Shui-xia. The use of ZnCl2 activation to prepare low-cost porous carbons coated on glass fibers using mixtures of Novolac, polyethylene glycol and furfural as carbon precursors. New Carbon Mater., 2015, 30(6): 579-586. doi: 10.1016/S1872-5805(15)60206-2
Citation: WEI Xiao-qun, LI Qi-han, LI Hai-chao, LI Hui-jun, CHEN Shui-xia. The use of ZnCl2 activation to prepare low-cost porous carbons coated on glass fibers using mixtures of Novolac, polyethylene glycol and furfural as carbon precursors. New Carbon Mater., 2015, 30(6): 579-586. doi: 10.1016/S1872-5805(15)60206-2

以酚醛包覆玻璃纤维为前驱体制备廉价活性炭纤维

doi: 10.1016/S1872-5805(15)60206-2
基金项目: 广东省科技项目(2014A030313192).
详细信息
    通讯作者:

    陈水挟,教授.E-mail:cescsx@mail.sysu.edu.cn

  • 中图分类号: TQ127.1+1

The use of ZnCl2 activation to prepare low-cost porous carbons coated on glass fibers using mixtures of Novolac, polyethylene glycol and furfural as carbon precursors

Funds: Science and Technology Project of Guangdong Province (2014A030313192).
  • 摘要: 以酚醛树脂、聚乙烯醇和糠醛的混合物包覆玻璃纤维,经炭化和氯化锌活化制备出一种廉价的纤维状活性炭材料。表征了这种纤维状活性炭材料的表面形态、微晶结构、孔结构、表面化学特征和机械强度,评价了该材料的吸附性能。结果表明,在炭前驱体中加入聚乙烯醇和糠醛可以有效促进孔隙的发育,提升所制备多孔炭材料的孔隙率。当在前驱体中加入聚乙烯醇和糠醛时,所制多孔炭材料的比表面积可达2 023 m2/g,否则其比表面积则仅为404 m2/g。聚乙烯醇的加入提高了氯化锌的溶解性,促进了炭前驱体的活化;而糠醛与酚醛交联结构的形成则提高了炭前驱体的热稳定性,提高了炭得率。这两方面的措施均有利于提高样品的比表面积并降低其制备成本。该纤维状活性炭材料具有与传统活性炭纤维相似的微晶结构和吸附性能。
  • Zhang J H, Zhang W B, Zhang Y. Pore structure characteristics of activated carbon fibers derived from poplar bark liquefaction and their use for adsorption of Cu(II)[J]. Bioresources, 2015, 10(1): 566-574.
    Yusof N, Ismail A F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review[J]. J Anal Appl Pyrol 2012, 93: 1-13.
    Cuerda-Correa E M, Macías-García A, Díez M, et al. Textural and morphological study of activated carbon fibers prepared from kenaf[J]. Micropor Mesopor Mater 2008, 111(1-3): 523-529.
    Nahil M A, Williams P T. Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres[J]. J Anal Appl Pyrol 2011; 91(1): 67-75.
    Valente N, Mouquinho A, Galacho C, et al. In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres[J]. Fuel Process Technol 2008, 89(5): 549-555.
    Economy J, Daley M A. Coated absorbent fibers[P]. US patent 5834114, 1998.
    Economy J, Mangun C L. Design of new materials for environmental control[J]. Macromol Symp 1999, 143: 75-79.
    An H, Feng B, Su S. CO2 capture capacities of activated carbon fibre-phenolic resin composites[J]. Carbon, 47(10): 2396-2405.
    Park S J, Jung W Y. KOH activation and characterization of glass fibers-supported phenolic resin[J]. J Colloid Interface Sci, 2003, 265(2): 245-250.
    Nagashanmugam K B, Srinivasan K. Evaluation of lead(II) removal by carbon derived from gingelly oil cake[J]. Asian J Chem, 2010, 22(7): 5447-5462.
    Ozdemir I, Sahin M, Orhan R, et al. Preparation and characterization of activated carbon from grape stalk by zinc chloride activation[J]. Fuel Process Technol, 2014, 125: 200-206.
    Lu X C, Jiang J C, Su K, et al. Preparation and characterization of sisal fiber-based activated carbon by chemical activation with zinc chloride[J]. B Kor Chem Soc, 2014, 35(1): 103-110.
    Hesas R H, Arami-Niya A, Wan D, et al. Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation[J]. J Ana Appl Pyrol, 2013, 104: 176-184.
    Makeswari M, Santhi T. Optimization of preparation of activated carbon from ricinus communis leaves by microwave-assisted zinc chloride chemical activation: Competitive adsorption of Ni2+ ions from aqueous solution[J]. J Chem, 2013: 1-12.
    Xiang X X, Liu E H, Huang Z Z, et al. Preparation of activated carbon from polyaniline by zinc chloride activation as supercapacitor electrodes[J]. J Solid State Electr, 2011, 15(11-12): 2667-2674.
    Yue Z, Mangun C L, Economy J. Preparation of fibrous porous materials by chemical activation 1. ZnCl2 activation of polymer coated fibers[J]. Carbon, 2002, 40(8): 1181-1191.
    Teng H, Wang S C. Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation[J]. Carbon, 2000, 38(6): 817-824.
    Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3): 1126-1130.
    Ram K, Abbie N J, Barry J M. Transmission electron microscopy, Raman and X-ray photoelectron spectroscopy studies on neutron irradiated polycrystalline graphite[J]. Radiat Phys Chem, 2015,107: 121-127.
    Leyua-Garcia S, Nueangnoraj K, Lozano-Castello D, et al. Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy[J]. Carbon, 2015, 89: 63-73.
    Li-Pook-Than A, Finnie P. Observation of the metallic-type selective etching of single walled carbon nanotubes by real-time in situ two-laser Raman spectroscopy[J]. Carbon, 2015, 89: 232-241.
    Wang H D, Liu J H, Zhang X, et al. Raman measurement of heat transfer in suspended individual carbon nanotube[J]. J Nanosci Nanotechno, 2015, 15(4): 2939-2943.
    Bistricic L, Borjanovic V, Leskovac M, et al. Raman spectra, thermal and mechanical properties of poly(ethylene terephthalate) carbon-based nanocomposite films[J]. J Polym Res, 2015, 22 (3): 1-12.
    Kazemi-Zanjani N, Gobbo P, Zhu Z Y, et al. High-resolution Raman imaging of bundles of single-walled carbon nanotubes by tip-enhanced Raman spectroscopy[J]. Can J Chem, 2015, 93(1): 51-59.
  • 加载中
计量
  • 文章访问数:  494
  • HTML全文浏览量:  76
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 录用日期:  2016-01-05
  • 刊出日期:  2015-12-28

目录

    /

    返回文章
    返回