留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CoNi-双金属氢氧化物//AC非对称超级电容器的构筑

谢莉婧 孙国华 谢龙飞 苏方远 李晓明 刘卓 孔庆强 吕春祥 李开喜 陈成猛

谢莉婧, 孙国华, 谢龙飞, 苏方远, 李晓明, 刘卓, 孔庆强, 吕春祥, 李开喜, 陈成猛. 基于CoNi-双金属氢氧化物//AC非对称超级电容器的构筑. 新型炭材料, 2016, 31(1): 37-45. doi: 10.1016/S1872-5805(16)60003-3
引用本文: 谢莉婧, 孙国华, 谢龙飞, 苏方远, 李晓明, 刘卓, 孔庆强, 吕春祥, 李开喜, 陈成猛. 基于CoNi-双金属氢氧化物//AC非对称超级电容器的构筑. 新型炭材料, 2016, 31(1): 37-45. doi: 10.1016/S1872-5805(16)60003-3
XIE Li-jing, SUN Guo-hua, XIE Long-fei, SU Fang-yuan, LI Xiao-ming, LIU Zhuo, KONG Qing-qiang, LU Chun-xiang, LI Kai-xi, CHEN Cheng-meng. A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon. New Carbon Mater., 2016, 31(1): 37-45. doi: 10.1016/S1872-5805(16)60003-3
Citation: XIE Li-jing, SUN Guo-hua, XIE Long-fei, SU Fang-yuan, LI Xiao-ming, LIU Zhuo, KONG Qing-qiang, LU Chun-xiang, LI Kai-xi, CHEN Cheng-meng. A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon. New Carbon Mater., 2016, 31(1): 37-45. doi: 10.1016/S1872-5805(16)60003-3

基于CoNi-双金属氢氧化物//AC非对称超级电容器的构筑

doi: 10.1016/S1872-5805(16)60003-3
基金项目: 国家自然科学基金(51402324,51402325,51302281).
详细信息
    作者简介:

    谢莉婧,博士,助理研究员.E-mail:xielijing@sxicc.ac.cn

    通讯作者:

    李开喜,博士,研究员.E-mail:likx99@yahoo.com;陈成猛,博士,副研究员.E-mail:ccm@sxicc.ac.cn

  • 中图分类号: TB333

A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon

Funds: National Natural Science Foundation of China(51402324,51402325,51302281).
  • 摘要: 以高电容特性的CoNi-LDH作正极,活性炭作负极,6 mol/L KOH溶液为电解液构筑CoNi-LDH/AC非对称超级电容器。由于这两种材料在同一种电解液中发生可逆循环时对应的电化学电势范围不同,因此通过组合这两种电极材料可以有效地解决对称电容器工作电压低的问题。用循环伏安、恒电流充放电等测试方法对其电化学性能进行研究。结果表明,所组装非对称电容器在碱性水系电解液中,其工作电压可以达到1.5 V。通过比较它与基于两种电极材料对称电容器的能量密度-功率密度曲线可以看出,非对称电容器的性能有了很大提高,在功率密度为102.3 W·kg-1时,其能量密度可以达到46.3 Wh·kg-1
  • Wei T Y, Chen C H, Chien H C, et al.A cost-effective supercapacitor material of ultrahigh specific capacitances:Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J].Adv Mater, 2010, 22:347-351.
    Wang H, Casalongue H S, Liang Y, et al.Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudo-capacitor materials[J].J Am Chem Soc, 2010, 132:7472-7477.
    Hu Z A, Xie Y L, Wang Y X, et al.Synthesis of α-cobalt hydroxides with different intercalated anions and effects of intercalated anions on their morphology, basal plane spacing and capacitive property[J].J Phys Chem C, 2009, 113:12502-12508.
    Frackowiak E.Carbon materials for supercapacitor application[J].Phys Chem Chem Phys, 2007, 9:1774-1785.
    Khomenko V, Raymundo-Piňero E, Frackowiak E, et al.High-voltage asymmetric supercapacitors operating in aqueous electrolyte[J].Appl Phys A:Mater Sci Process, 2006, 82:567-573.
    Park J H, Park O O.Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes[J].J Power Sources, 2002, 111:185-190.
    Yan J, Fan Z, Sun W, et al.Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density[J].Adv Funct Mater, 2012, 22:2632-2641.
    Frackowiak E, Béguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon, 2001, 39:937-950.
    Qu Q T, Shi Y, Li L L, et al.V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution[J].Electrochem Commun, 2009, 11:1325-1328.
    Khomenko V, Raymundo-Pińero E, Béguin F.Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium[J].J Power Sources, 2006, 153:183-190.
    Wang D W, Li F, Cheng H M.Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor[J].J Power Sources, 2008, 185:1563-1568.
    Wang Y G, Yu L, Xia Y Y.Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)2/carbon nanotube composites and activated carbon[J].J Electrochem Soc, 2006, 153:A743-A748.
    Song Q S, Li Y Y, Lchan S L.Physical and electrochemical characteristics of nanostructured nickel hydroxide powder[J].J Appl Electrochem, 200535:157-162.
    Cheng J, Cao G P, Yang Y S.Characterization of sol-gel-derived NiOx xerogels as supercapacitors[J].J Power Sources, 2006, 159:734-731.
    Oliva P, Leonardi J, Laurent J F, et al.Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides[J].J Power Sources, 1982, 8:229-255.
    Mockenhaupt C, Zeiske T, Lutz H D.Crystal structure of brucite-type cobalt hydroxide β-Co{O(H, D)}2-neutron diffraction, IR and Raman spectroscopy[J].J Mol Struct, 1998, 443:191-203.
    El-Batlouni H, El-Rassy H, Al-Ghoul M.Cosynthesis, coexistence, andself-organization of α-and β-cobalt hydroxide based on diffusion and reaction in organic gels[J].J Phys Chem A, 2008, 112:7755-7757.
    Jayashree R S, Kamath P V.Suppression of the α→β-nickel hydroxide transformation in concentrated alkali:Role of dissolved cations[J].J Appl Electrochem, 2001, 31:1315-1320.
    Zhao M Q, Zhang Q, Huang J Q, et al.Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications[J].Adv Funct Mater, 2012, 22:675-694.
    Yang J, Yu C, Fan X M, et al.3D architecture materials made of NiCoAl-LDH nanoplates coupled with Ni Co-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors[J].Adv Energy Mater, 2014, DOI: 10.1002/aenm.201400761.
    Zhao J W, Chen J L, Xu S M, et al.Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors[J].Adv Funct Mater, 2014, 24:2938-2946.
    Guerlou-Demourgues L, Tessier C, Bernard P, et al.Influence of substituted zinc on stacking faults in nickel hydroxide[J].J Mater Chem, 2004, 14:2649-2654.
    Xie L J, Hu Z A, Lv C X, et al.CoxNi1-x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials[J].Electrochim Acta, 2012, 78:205-211.
    Coudun C, Hochepied J F.Nickel hydroxide "stacks of pancakes" obtained by the coupled effect of ammonia and template agent[J].J Phys Chem B, 2005, 109:6069-6074.
    Liu Z, Ma R, Osada M, et al.Selective and controlled synthesis of α-and β-cobalt hydroxides in highly developed hexagonal platelets[J].J Am Chem Soc, 2005, 127:13869-13874.
    Fan Z J, Yan J, Wei T, et al.Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J].Adv Funct Mater, 2011, 21:2366-2375.
    Qi X C.Study of asymmetric hybrid supercapacitor's modeling.Proceedings of ISES solar world congress 2007:Solar energy and human settlement[C].September 18-21, 2007, Beijing, 2811-2814.
    Wang D W, Fang H T, Li F, et al.Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage[J].Adv Funct Mater, 2008, 18:3787-3793.
    Wang Q, Wen Z, Li J.A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode[J].Adv Funct Mater, 2006, 16:2141-2146.
  • 加载中
图(1)
计量
  • 文章访问数:  784
  • HTML全文浏览量:  70
  • PDF下载量:  868
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-12
  • 录用日期:  2016-02-02
  • 修回日期:  2016-01-11
  • 刊出日期:  2016-01-28

目录

    /

    返回文章
    返回