留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废米糠制备炭纳米颗粒及其对金属离子的光学传感性能

Peggy Zhen Zhen Ngu Stephanie Pei Phing Chia Jessica Fung Yee Fong Sing Muk Ng

Peggy Zhen Zhen Ngu, Stephanie Pei Phing Chia, Jessica Fung Yee Fong, Sing Muk Ng. 废米糠制备炭纳米颗粒及其对金属离子的光学传感性能. 新型炭材料, 2016, 31(2): 135-143. doi: 10.1016/S1872-5805(16)60008-2
引用本文: Peggy Zhen Zhen Ngu, Stephanie Pei Phing Chia, Jessica Fung Yee Fong, Sing Muk Ng. 废米糠制备炭纳米颗粒及其对金属离子的光学传感性能. 新型炭材料, 2016, 31(2): 135-143. doi: 10.1016/S1872-5805(16)60008-2
Peggy Zhen Zhen Ngu, Stephanie Pei Phing Chia, Jessica Fung Yee Fong, Sing Muk Ng. Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions. New Carbon Mater., 2016, 31(2): 135-143. doi: 10.1016/S1872-5805(16)60008-2
Citation: Peggy Zhen Zhen Ngu, Stephanie Pei Phing Chia, Jessica Fung Yee Fong, Sing Muk Ng. Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions. New Carbon Mater., 2016, 31(2): 135-143. doi: 10.1016/S1872-5805(16)60008-2

废米糠制备炭纳米颗粒及其对金属离子的光学传感性能

doi: 10.1016/S1872-5805(16)60008-2
详细信息
    通讯作者:

    Sing Muk Ng.E-mail:smng@swinburne.edu.my

  • 中图分类号: TQ127.1+1

Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions

  • 摘要: 以废米糠为原料,浓硫酸为脱水剂,通过炭化法制备出炭纳米颗粒(CNPs),探讨CNPs荧光发射特征、金属离子的淬灭效应以及作为Sn(Ⅱ)离子传感材料应用。CNPs产率最佳条件为:硫酸浓度12 mol/L、加热温度120℃及恒温时间30 min。样品在水中强蓝光的最大发射波为439 nm。通过加入金属离子,使金属离子与CNPs表面间形成复合物而淬灭荧光。Sn(Ⅱ)离子对CNPs荧光具有显著的淬灭效应。Sn(Ⅱ)离子浓度对淬灭效应符合Stern-Volmer线性关系,Sn(Ⅱ)离子为6.13 mmol/L。Sn(Ⅱ)离子的检测限为18.7μmol/L。
  • Mansur H S. Quantum dots and nanocomposites[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2010, 2(2):113-129.
    Xiao Q, Huang S, Su W, et al. Systematically investigations of conformation and thermodynamics of HSA adsorbed to different sizes of CdTe quantum dots[J]. Colloids and Surfaces B:Biointerfaces, 2013, 102:76-82.
    Maity D, Kumar A, Gunupuru R, et al. Colorimetric detection of mercury(Ⅱ) in aqueous media with high selectivity using calixarene functionalized gold nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 455:122-128.
    Barkalina N, Charalambous C, Jones C, et al. Nanotechnology in reproductive medicine:Emerging applications of nanomaterials[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2014, 10(5):921-938.
    Mahmood Q, Khan A F, Khan A. Chapter 25-Colloids in the environmental protection-Current and future trends[J]. The Role of Colloidal Systems in Environmental Protection, 2014, 635-677.
    Che B H X, Yeap S P, Ahmad A L, et al. Layer-by-layer assembly of iron oxide magnetic nanoparticles decorated silica colloid for water remediation[J]. Chemical Engineering Journal, 2014, 243:68-78.
    Yu S J, Kang M W, Chang H C, et al. Bright fluorescent nanodiamonds:No photobleaching and low cytotoxicity[J]. Journal of the American Chemical Society, 2005, 127(50):17604-17605.
    Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7757.
    Wang K, Gao Z, Gao G, et al. Systematic safety evaluation on photoluminescent carbon dots[J]. Nanoscale Res Lett, 2013, 8(1):1-9.
    Probst C E, Zrazhevskiy P, Bagalkot V, et al. Quantum dots as a platform for nanoparticle drug delivery vehicle design[J]. Advanced Drug Delivery Reviews, 2013, 65(5):703-718.
    Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicine[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2011, 7(4):385-402.
    Baker S N, Baker G. A Luminescent carbon nanodots:Emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49(38):6726-6744.
    Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo[J]. Journal of the American Chemical Society, 2009, 131(32):11308-11309.
    Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40):12736-12737.
    Liu L, Li Y, Zhan L, et al. One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions[J]. Science China Chemistry, 2011, 54(8):1342-1347.
    Sahu S, Behera B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents[J]. Chemical Communications, 2012, 48(70):8835-8837.
    Omatola K M, Onojah A D. Elemental analysis of rice husk ash using X-ray fluorescence technique[J]. International Journal of Physical Sciences, 2009, 4(4):189-193.
    Bourlinos A B, Zboǐil R, Petr J, et al. Luminescent surface quaternized carbon dots[J]. Chemistry of Materials, 2011, 24(1):6-8.
    Wang L, Zhu S-J, Wang H-Y, et al. Common origin of green luminescence in carbon nanodots and graphene quantum Dots[J]. ACS Nano, 2014, 8(3):2541-2547.
    Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. Journal of Materials Chemistry, 2009, 19(4):484-488.
    Esteves da Silva J C G, Gonçalves H M R. Analytical and bioanalytical applications of carbon dots[J]. TrAC Trends in Analytical Chemistry, 2011, 30(8):1327-1336.
    Erçin D, Yürüm Y. Carbonisation of Fir(Abies bornmulleriana) wood in an open pyrolysis system at 50-300℃[J]. Journal of Analytical and Applied Pyrolysis, 2003, 67(1):11-22.
    Caballero J A, Marcilla A, Conesa J A. Thermogravimetric analysis of olive stones with sulphuric acid treatment[J]. Journal of Analytical and Applied Pyrolysis, 1997, 44(1):75-88.
    Zhai X, Zhang P, Liu C, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis[J]. Chemical Communications, 2012, 48(64):7955-7957.
    Wang X, Cao L, Lu F, et al. Photoinduced electron transfers with carbon dots[J]. Chemical Communications, 2009,(25):3774-3776.
    Zeng L, Zhang L, Barron A R. Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length[J]. Nano Letters, 2005, 5(10):2001-2004.
    Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chemical Communications, 2012, 48(3):380-382.
    Mao Y, Bao Y, Yan L, et al. pH-switched luminescence and sensing properties of a carbon dot-polyaniline composite[J]. RSC Advances, 2013, 3(16):5475-5482.
    Wu D, Chen Z, Huang G, et al. ZnSe quantum dots based fluorescence sensors for Cu2+ions[J]. Sensors and Actuators A:Physical, 2014, 205:72-78.
    El-Sheikh A H. Effect of chemical treatment of multi-walled carbon nanotubes with various oxidizing agents on its preconcentration performance of some metals[J]. Jordan Journal of Chemistry, 2008, 3(3):293-304.
    Shen L, Zhang L, Chen M, et al. The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging[J]. Carbon, 2013, 55:343-349.
    Mohd Yazid S, Chin S, Pang S, et al. Detection of Sn(Ⅱ) ions via quenching of the fluorescence of carbon nanodots[J]. Microchimica Acta, 2013, 180(1-2):137-143.
    Zong J, Yang X, Trinchi A, et al. Carbon dots as fluorescent probes for "off-on" detection of Cu2+ and l-cysteine in aqueous solution[J]. Biosensors and Bioelectronics, 2014, 51:330-335.
    Ron?evi? S, Benuti? A, Nemet I, et al. Tin content determination in canned fruits and vegetables by hydride generation inductively coupled plasma optical emission spectrometry[J]. International Journal of Analytical Chemistry, 2012:1-7.
  • 加载中
计量
  • 文章访问数:  753
  • HTML全文浏览量:  127
  • PDF下载量:  559
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 录用日期:  2016-04-21
  • 修回日期:  2016-02-28
  • 刊出日期:  2016-04-28

目录

    /

    返回文章
    返回