留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A3-3基体石墨的氧化行为

周湘文 卢振明 李馨楠 张杰 刘兵 唐亚平

周湘文, 卢振明, 李馨楠, 张杰, 刘兵, 唐亚平. A3-3基体石墨的氧化行为. 新型炭材料, 2016, 31(2): 182-187. doi: 10.1016/S1872-5805(16)60010-0
引用本文: 周湘文, 卢振明, 李馨楠, 张杰, 刘兵, 唐亚平. A3-3基体石墨的氧化行为. 新型炭材料, 2016, 31(2): 182-187. doi: 10.1016/S1872-5805(16)60010-0
ZHOU Xiang-wen, LU Zhen-ming, LI Xin-nan, ZHANG Jie, LIU Bing, TANG Ya-ping. The oxidation behavior of A3-3 matrix graphite. New Carbon Mater., 2016, 31(2): 182-187. doi: 10.1016/S1872-5805(16)60010-0
Citation: ZHOU Xiang-wen, LU Zhen-ming, LI Xin-nan, ZHANG Jie, LIU Bing, TANG Ya-ping. The oxidation behavior of A3-3 matrix graphite. New Carbon Mater., 2016, 31(2): 182-187. doi: 10.1016/S1872-5805(16)60010-0

A3-3基体石墨的氧化行为

doi: 10.1016/S1872-5805(16)60010-0
基金项目: 国家公派留学基金(201406215002);国家科技重大专项(ZX06901);清华大学自主科研项目(20121088038).
详细信息
    通讯作者:

    周湘文,博士,副研究员.E-mail:xiangwen@tsinghua.edu.cn

  • 中图分类号: TQ165

The oxidation behavior of A3-3 matrix graphite

Funds: State Scholarship Foundation of China(201406215002); Chinese National S & T Major Project(ZX06901); Tsinghua University Initiative Scientific Research Program(20121088038).
  • 摘要: 采用自行搭建的热重实验平台对798~973 K温度范围内温度对A3-3基体石墨的氧化行为进行研究,氧化剂为100 mL/min的空气。不同温度下石墨试样均被氧化至失重10%~15%。结果表明,基体石墨的氧化速率(OR)随着温度的升高显著提升,温度为973 K时基体石墨的OR约为798 K时的70倍。虽然973 K时氧气供给速率与平均碳消耗速率的比值仅为4.3,但石墨OR的Arrhenius曲线依然保持了很好的线性关系,表明该温度下基体石墨的氧化机理没有发生改变。在798-973 K温度范围内,A3-3基体石墨在空气中的氧化均处于化学区,其活化能为176 kJ/mol,Arrhenius氧化方程可描述为:OR=2.9673×108·exp(-21124.8/T),单位为wt%/min。与堆内的核级结构石墨相比,基体石墨的活化能相对较低,说明基体石墨在空气中更易被氧化,这主要跟基体石墨中含有未完全石墨化的树脂炭有关。
  • ZHOU Xiang-wen, YI Zi-long, LU Zhen-ming, et al. Graphite materials in pebble-bed high temperature gas-cooled reactors[J]. Carbon Techniques, 2012, 6:B9-B13.
    Moormann R, Hinssen H-K, Kuhn K. Oxidation behavior of an HTR fuel element matrix graphite in oxygen compared to a standard nuclear graphite[J]. Nuclear Engineering and Design, 2004, 227:281-284.
    Zhou Xiangwen, Lu Zhenming, Zhang Jie, et al. Preparation of spherical fuel elements for HTR-PM in INET[J]. Nuclear Engineering and Design, 2013, 263:456-461.
    Hrovat M, Grosse K H. Manufacture of high corrosion resistant fuel spheres(FS) for high temperature pebble bed modular reactors(PBMR)[C]. Proceedings of the HTR2006, B00000281, Johannesburg, South Africa, 2006.
    Xueliang Qiu, Shichao Zhang, Jun He, et al. Oxidation behavior of the matrix materials. IAEA-TECDOC-901:graphite moderate lifecycle behavior[C]. Specialist Meeting on the Graphite Moderator Lifecycle Behavior, Bath, United Kingdom, 1996:351-362.
    Fuller E L, Okoh J M. Kinetics and mechanisms of the reaction of air with nuclear grade graphites:IG-11. Journal of Nuclear Materials, 1997, 240:241-250.
    Kim E S, Lee W W, No H C. Analysis of geometrical effects on graphite oxidation through measurement of internal surface area[J]. Journal of Nuclear Materials, 2006, 348:174-180.
    Choi W K, Kim B J, Kim E S, et al. Oxidation Behavior of IG and NBG nuclear graphites[J]. Nuclear Engineering and Design, 2011, 241:82-87.
    Contescu C I, Azad S, Miller D, et al. Practical aspects for characterizing air oxidation of graphite[J]. Journal of Nuclear Materials, 2008, 381:15-24.
    Lee J J, Ghosh T K, Loyalka S K. Oxidation rate of nuclear-grade graphite NBG-18 in the kinetic regime for VHTR air ingress accident scenarios[J]. Journal of Nuclear Materials, 2013, 438:77-87.
    Clark T J, Woodley R E, deHalas D R. Gas-graphite systems[C]. R. E. Nightingale(Ed.), Nuclear Graphite, Academic Press, New York, 1962:387.
    Moormann R, Hinssen H K, Krussenberg A K, et al. Investigation of oxidation resistance of carbon based first-wall liner materials of fusion reactors[J]. Journal of Nuclear Materials, 1994, 212-215:1178-1182.
    Pappano P J, Burchell T D, Hunn J D, et al. A novel approach to fabricating fuel compacts for the next generation nuclear plant(NGNP)[J]. Journal of Nuclear Materials, 2008, 381:25-38.
    Hinssen H K, Katcher W, Moormann R. Kinetics Der Graphite/sauerstoff Reaction[M]. Juel-1875, 1983.
    Blanchard A. Appendix 2. The thermal oxidation of graphite, irradiation damage in graphite due to fast neutrons in fission and fusion systems[R]. IAEA-TECDOC-1154, 2003:207-213.
    Standard test method for air oxidation of carbon and graphite in the kinetic regime[S]. An American National Standard, D7542-09, 2009.
    Zaghib K, Song X, Kinoshita K. Thermal analysis of the oxidation of natural graphite:isothermal kinetic studies[J]. Thermochim. Acta, 2001, 371:57-64.
    Hawtin P, Gibson J A, Murdoch R, et al. The effect of diffusion and bulk gas flow on the thermal oxidation of nuclear graphite-I. Temperatures below 500℃[J]. Carbon, 1964, 2:299-309.
  • 加载中
计量
  • 文章访问数:  552
  • HTML全文浏览量:  85
  • PDF下载量:  563
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-26
  • 录用日期:  2016-04-21
  • 修回日期:  2016-04-02
  • 刊出日期:  2016-04-28

目录

    /

    返回文章
    返回