留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孔有效利用的活性炭基非对称电极膜/电容脱盐系统

Jiyoung Kim Dong-Hyun Peck Byungrok Lee Seong-Ho Yoon Doo-Hwan Jung

Jiyoung Kim, Dong-Hyun Peck, Byungrok Lee, Seong-Ho Yoon, Doo-Hwan Jung. 孔有效利用的活性炭基非对称电极膜/电容脱盐系统. 新型炭材料, 2016, 31(4): 378-385. doi: 10.1016/S1872-5805(16)60020-3
引用本文: Jiyoung Kim, Dong-Hyun Peck, Byungrok Lee, Seong-Ho Yoon, Doo-Hwan Jung. 孔有效利用的活性炭基非对称电极膜/电容脱盐系统. 新型炭材料, 2016, 31(4): 378-385. doi: 10.1016/S1872-5805(16)60020-3
Jiyoung Kim, Dong-Hyun Peck, Byungrok Lee, Seong-Ho Yoon, Doo-Hwan Jung. An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system. New Carbon Mater., 2016, 31(4): 378-385. doi: 10.1016/S1872-5805(16)60020-3
Citation: Jiyoung Kim, Dong-Hyun Peck, Byungrok Lee, Seong-Ho Yoon, Doo-Hwan Jung. An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system. New Carbon Mater., 2016, 31(4): 378-385. doi: 10.1016/S1872-5805(16)60020-3

孔有效利用的活性炭基非对称电极膜/电容脱盐系统

doi: 10.1016/S1872-5805(16)60020-3
详细信息
    通讯作者:

    Doo-Hwan Jung.E-mail:doohwan@kier.re.kr

  • 中图分类号: TQ127.1+1

An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system

More Information
    Corresponding author: Doo-Hwan Jung.E-mail:doohwan@kier.re.kr
  • 摘要: 采用活性炭纤维为原料制备出膜/电容脱盐系统,提纯含氯化钠的水。OG系列活性炭纤维作为电极的活性材料,其比表面积和孔分布不同而呈现不同的活化程度。将这些材料用于膜/电容脱盐系统,评价了他们对钠离子或氯离子的脱盐性能。膜/电容实验在不同操作电位窗口、含盐溶液的进料速率和浓度下进行。OG系列活性炭纤维对每种离子的脱盐效率和电吸附量来评价膜/电容性能。结果表明,BET比表面积是确保高性能的必要因素。另外,炭材料最上端的浅孔有助于活性炭纤维比表面积的充分利用。OG7A样品的孔结构适合于钠离子吸附,OG10A和OG15A适于大量孔吸附氯离子。因此,非对称电极排列施加于吸附离子的尺寸,应考虑炭材料比表面积和孔面积的有效利用,以得到高性能的膜/电容脱盐系统。   
    支撑材料
  • Elimelech M, Phillip W A. The future of seawater desalination:Energy, technology, and the environment[J]. Science, 2011, 333:712-717.
    Welgemoed T J, Schutte C F. Capacitive deionization technologyTM:An alternative desalination solution[C]. European Conference on Desalination and the Environment, ITALY, 2005,183:327-340.
    Oda H, Nakagawa Y. Removal of ionic substances from dilute solution using activated carbon electrodes[J]. Carbon, 2003, 41:1037-1047.
    Lee J B, Park K K, Eum H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196:125-134.
    Lee J H, Bae W S, Choi J H. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process[J]. Desalination, 2010, 258:159-163.
    Biesheuvel P M, Bazant M Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes[J]. Physical Review E, 2010, 81:031502.
    Hou C H, Huang C Y, Hu C Y. Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions[J]. Int J Environ Sci Technol, 2013, 10:753-760.
    Nugrahenny A U, Kim J, Kim S K, et al. Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization[J]. Carbon Letters, 2014, 15:38-44.
    Oren Y. Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review)[J]. Desalination, 2008, 228:10-29.
    Anderson M A, Cudero A L, Palma J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices:Will it compete?[J]. Electrochimica Acta, 2010, 55:3845-3856.
    Porada S, Zhao R, van der Wal A, et al. Biesheuvel, review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58:1388-1442.
    Farmer J C, Fix D V, Mack G V, et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. J Electrochem Soc, 1996, 143:159-169.
    Jung H H, Hwang S W, Hyun S H, et al. Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying[J]. Desalination, 2007, 216:377-385.
    Kohli D K, Singh R, Singh A, et al. Enhanced salt-dsorption capacity of ambient pressure dried carbon aerogel activated by CO2 for capacitive deionization application[J]. Desalination and Water Treatment, 2014:1-7.
    Avraham E, Yaniv B, Soffer A D. Aurbach, developing ion electroadsorption stereoselectivity, by pore size adjustment with chemical vapor deposition onto active carbon fiber electrodes. Case of Ca2+/Na+ separation in water capacitive desalination[J]. J Phys Chem C, 2008, 112:7385-7389.
    Huang Z H, Wang M, Wang L, et al. Relation between the charge efficiency of activated carbon fiber and its desalination performance[J]. Langmuir, 2012, 28:5079-5084.
    Chou W L, Cheng L C, Hu J L, et al. Desalination by electrochemically enhanced adsorption using activated carbon fiber cloth electrodes[J]. Fresenius Environmental Bulletin, 2013, 22:117-122.
    Chen Y, Yue M, Huang Z H, et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization[J]. Chemical Engineering Journal, 2014, 252:30-37.
    Tsouris C, Mayes R, Kiggans J, et al. Mesoporous carbon for capacitive deionization of saline water[J]. Environ Sci Technol, 2011,45:10243-10249.
    Wang G, Qian B, Dong Q, et al. Highly mesoporous activated carbon electrode for capacitive deionization[J]. Separation and Purification Technology, 2013, 103:216-221.
    Li H, Lu T, Pan L, et al, Electrosorption behavior of graphene in NaCl solutions[J]. J Mater Chem, 2009, 19:6773-6779.
    Wang H, Zhang D, Yan T, et al. Graphene prepared via a novel pyriding-theral strategy for capacitive deionization[J]. J Mater Chem, 2012, 22:23745-23748.
    Jia B, Zou L. Graphene nanosheets reduced by a multi-step process as high-performance electrode material for capacitive deionization[J]. Carbon, 2012, 50:2315-2321.
    Li H, Gao Y, Pan L, et al. Electrosorptive desalination by carbon nanotubes and nanofibers electrodes and ion-exchange membranes[J]. Water Research, 2008, 42:4923-4928.
    Yang C M, Choi W H, Na B K, et al. Capacitive deionization of NaCl solution with carbon aerogel-silica gel composite electrodes[J]. Desalination, 2005, 174:125-133.
    Porada S, Borchardt L, Bryjak M, et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization[J]. Energy Environ Sci, 2013, 6:3700-3712.
    Biesheuvel P M, Zhao R, Porada S, et al. Theory of membrane capacitive deionzation including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360:239-248.
    Han L, Karthikeyan K G, Anderson M A, et al. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization[J]. Journal of Colloid and Interface Science, 2014, 430:93-99.
    Tien P D, Morisaka H, Satoh T, et al. Yamaguchi, efficient evolution of hydrogen from tetrahydronaphthalene upon palladium catalyst supported on activated carbon fiber[J]. Energy & Fuels, 2003, 17:658-660.
    J Miyawaki, T Shimohara, N Shirahama, et al. Removal of NOx from air through cooperation of the TiO2 photocatalyst and urea on activated carbon fiber at room temperature[J]. Applied Catalysis B:Environmental, 2011, 110:273-278.
    Kisamori S, Kuroda K, Kawano S, et al. Oxidative removal of SO2 and recovery of H2SO4 over poly(acrylonitrile)-based active carbon fiber[J]. Energy & Fuels, 1994, 8:1337-1340.
    Lee S, Mitani I, Yoon S, et al. Mochida, Capacitance and H2SO4 adsorption in the pores of activated carbon fibers[J]. Appl Phys A, 2006, 82:647-652.
    Shiratori N, Lee KJ, Miyawaki J, et al. Pore structure analysis of activated carbon fiber by microdomain-based model[J]. Langmuir, 2009, 25:7631-7637.
    Lee K J, Miyawaki J, Shiratori N, et al. Toward an effective adsorbent for polar pollutants:formaldehyde adsorption by activated carbon[J]. Journal of Hazardous Materials, 2013, 260:82-88.
    El-Merraoui M, Aoshima M, Kaneko K. Micropore size distribution of activated carbon fiber using the density functional theory and other method[J]. Langmuir, 2000, 26:4300-4304.
    Kim Y J, Choi J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J]. Separation and Purification Technology, 2010, 71:70-75.
    Kim Y J, Choi J H. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer[J]. Water Research, 2010, 44:990-996.
    Simon P, Burke A. Nanostructured carbons:Double-layer capacitance and more, The electrochemical society interface[J]. 2008, 17:38-43.
    Smith D E, Dang L X. Computer simulations of NaCl association in polarizable water[J]. J Chem Phys, 1994, 100:3757-3766.
    Kalluri R K, Biener M M, Suss M E, et al. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes[J]. Phys Chem Chem Phys, 2013, 15:2309-2320.
  • 加载中
图(1)
计量
  • 文章访问数:  487
  • HTML全文浏览量:  63
  • PDF下载量:  411
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-28
  • 录用日期:  2016-08-29
  • 修回日期:  2016-07-28
  • 刊出日期:  2016-08-28

目录

    /

    返回文章
    返回