留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炭纤维和废弃聚乙烯在沥青中的分散行为及其性能

张茂荣 方长青 周世生 程有亮 胡京博

张茂荣, 方长青, 周世生, 程有亮, 胡京博. 炭纤维和废弃聚乙烯在沥青中的分散行为及其性能. 新型炭材料, 2016, 31(4): 424-430. doi: 10.1016/S1872-5805(16)60022-7
引用本文: 张茂荣, 方长青, 周世生, 程有亮, 胡京博. 炭纤维和废弃聚乙烯在沥青中的分散行为及其性能. 新型炭材料, 2016, 31(4): 424-430. doi: 10.1016/S1872-5805(16)60022-7
ZHANG Mao-rong, FANG Chang-qing, ZHOU Shi-sheng, CHENG You-liang, HU Jing-bo. Modification of asphalt by dispersing waste polyethylene and carbon fibers in it. New Carbon Mater., 2016, 31(4): 424-430. doi: 10.1016/S1872-5805(16)60022-7
Citation: ZHANG Mao-rong, FANG Chang-qing, ZHOU Shi-sheng, CHENG You-liang, HU Jing-bo. Modification of asphalt by dispersing waste polyethylene and carbon fibers in it. New Carbon Mater., 2016, 31(4): 424-430. doi: 10.1016/S1872-5805(16)60022-7

炭纤维和废弃聚乙烯在沥青中的分散行为及其性能

doi: 10.1016/S1872-5805(16)60022-7
基金项目: 国家自然科学基金(51172180,51372200);新世纪优秀人才支持计划(NCET-12-1045);陕西省教育厅服务地方专项计划项目(2013JC19);西安理工大学优博基金资助项目(102-211208).
详细信息
    作者简介:

    张茂荣,博士生.E-mail:zmr.1234@163.com

    通讯作者:

    方长青,教授.E-mail:fcqxaut@163.com

  • 中图分类号: TQ342+.74

Modification of asphalt by dispersing waste polyethylene and carbon fibers in it

Funds: National Natural Science Foundation of China(51172180,51372200);Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-1045);Local Service Program of Shaanxi Provincial Education Department(2013JC19);Excellent PhD dissertation Foundation of XAUT(102-211208).
  • 摘要: 聚丙烯腈基炭纤维和废弃聚乙烯作为改性剂,采用热熔共混、絮凝处理、熔融共挤3种工艺对道路沥青进行改性,并研究了炭纤维分散性对沥青性能的影响。研究表明:炭纤维和废弃聚乙烯对沥青的改性为物理改性,随着炭纤维含量的增加,改性沥青的软化点和延度上升,针入度降低,改性沥青高温性能得到改善。过高的炭纤维含量将不利于分散而发生纤维团聚,当炭纤维含量超过0.1%,将造成改性沥青性能降低。微观观察发现,熔融共挤工艺较其他工艺,炭纤维与聚乙烯能较好的分散和结合,使得聚乙烯与炭纤维形成良好的类荆棘状吸附,在沥青中分散最佳,改性沥青的高温性和抗车辙性能得到较大提高。
  • Airey G D. Styrene butadiene styrene polymer modification of road bitumen[J]. Journal of Materials Science, 2004, 39(3):951-959.
    Xiao C, Ling T Q, Qiu Y J. Optimization of technical measures for improving high-temperature performance of asphalt-rubber mixture[J]. J Mod Transport, 2013, 21(4):273-280.
    Sun L, Xin X T, Ren J L. Pavement performance of nanomaterial modified asphalt mixture[J]. Journal of southeast university, 2013, 43(4):873-876.
    Fang C Q, Zhou S S, Zhang M R, et al. Optimization of the modification technologies of asphalt by using waste EVA from packaging[J]. Vinyl and Additive Technology, 2009, 15(3):119-203.
    Mohammad J K, Ahmed K, Hashim R R. Characterization of carbon nano-fiber modified hot mix asphalt mixtures[J]. Construction and Building Materials, 2013, 40:738-745.
    Sayyed M A, Mohammad S, Sayyed M H. Fiber-reinforced asphalt-concrete-A review[J].Construction and Building Materials, 2010, 24:871-877.
    Che D M, Saxena I, Han PD, et al. Machining of carbon fiber reinforced plastics/polymers:A literature review[J]. Journal of Manufacturing Science and Engineering, 2014, 136:034001-1-22.
    Burri F, Fertl M, Feusi P, et al. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications[J]. Vacuum, 2014, 101:212-216.
    Fang C Q, Zhang Y, Yu R E, et al. Effect of organic montmorillonite on the hot storage stability of asphalt modified by waste packaging polyethylene[J]. Journal of Vinyl & Additive Technology, 2014, 10:1001-1005.
    Cong P L, Yu J Y, Wu S P, et al. Laboratory investigation of the properties of asphalt and its mixtures modified with flame retardant[J]. Construction and Building Materials, 2008, 22:1037-1042.
    Industry standards of the People's Republic of China. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering[S]. Issued by the Ministry of Transport of the People's Republic of China JTJ 052-2000.
    Fang C Q, Yu R E, Zhang Y, et al. Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite[J]. Polymer Testing, 2012, 31:276-281.
    Kesavan K, Ravisankar K, Senthil R, et al. Experimental studies on performance of reinforced concrete beam strengthened with CFRP under cyclic loading using FBG array[J]. Measurement, 2013, 46:3855-3862.
    Tang B M, Ding Y J, Zhu H Z, et al. Study on agglomeration variation pattern of asphalt molecules[J]. China Journal of Highway and Transport, 2013, 26(3):50-56.
    Hassan Firoozifar S, Foroutan S, Foroutan S. The effect of asphaltene on thermal properties of bitumen[J]. Chemical Engineering Research and Design, 2011,10:698-703.
    Haddadi S, Ghorbel E, Laradi N. Effects of the manufacturing process on the performances of the bituminous binders modified with EVA[J]. Construction and Building Materials, 2008, 22:1212-1219.
    Ye Y, Yang X H, Chen C H. Viscoplastic behaviour of asphalt mixture in compression[J]. Materials Research Innovations, 2011, 15:45-48.
    Vandellos T, Huchette C, Carrère N. Proposition of a framework for the development of a cohesive zone model adapted to Carbon-Fiber Reinforced Plastic laminated composites[J]. Composite Structures, 2013, 105:199-206.
    Schreiner C A. Review of mechanistic studies relevant to the potential carcinogenicity of asphalts[J]. Regulatory Toxicology and Pharmacology, 2011, 59:270-284.
    Chockalingam K, Saravanan U, Krishnan J M. Characterization of petroleum pitch using steady shear experiments[J]. International Journal of Engineering Science, 2010, 48:1092-1109.
    Adhikari S, You Z P, Hao P W, et al. Image analysis of aggregate, mastic and air void phases for asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2013, 2(13):1-9.
    Caro S, Masad E, Bhasin A, et al. Micromechanical modeling of the influence of material properties on moisture-induced damage in asphalt mixtures[J]. Construction and Building Materials, 2010, 24:1184-1192.
  • 加载中
图(1)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  110
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-19
  • 录用日期:  2016-08-29
  • 修回日期:  2016-07-27
  • 刊出日期:  2016-08-28

目录

    /

    返回文章
    返回