留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米球形炭的无催化化学气相沉积制备及其机理研究

张铀 杨威 罗瑞盈 商海东

张铀, 杨威, 罗瑞盈, 商海东. 纳米球形炭的无催化化学气相沉积制备及其机理研究. 新型炭材料, 2016, 31(5): 467-474. doi: 10.1016/S1872-5805(16)60025-2
引用本文: 张铀, 杨威, 罗瑞盈, 商海东. 纳米球形炭的无催化化学气相沉积制备及其机理研究. 新型炭材料, 2016, 31(5): 467-474. doi: 10.1016/S1872-5805(16)60025-2
ZHANG You, YANG Wei, LUO Rui-ying, SHANG Hai-dong. Preparation of carbon nanospheres by non-catalytic chemical vapor deposition and their formation mechanism. New Carbon Mater., 2016, 31(5): 467-474. doi: 10.1016/S1872-5805(16)60025-2
Citation: ZHANG You, YANG Wei, LUO Rui-ying, SHANG Hai-dong. Preparation of carbon nanospheres by non-catalytic chemical vapor deposition and their formation mechanism. New Carbon Mater., 2016, 31(5): 467-474. doi: 10.1016/S1872-5805(16)60025-2

纳米球形炭的无催化化学气相沉积制备及其机理研究

doi: 10.1016/S1872-5805(16)60025-2
基金项目: 国防基础科研计划重点项目(A2120132005).
详细信息
    通讯作者:

    罗瑞盈.E-mail:ryluo@buaa.edu.cn

  • 中图分类号: TQ127.1+1

Preparation of carbon nanospheres by non-catalytic chemical vapor deposition and their formation mechanism

Funds: National Defense Basic Scientific Research Program of China(A2120132005).
  • 摘要: 以天然气为碳源,氢气为载气,通过无催化化学气相沉积的方法,合成不同粒径的球形炭。研究了沉积温度、压力和气体比例对化学气相沉积球形炭的影响。用X射线衍射、扫描电子显微镜和透射电子显微镜对实验结果进行表征。研究结果表明制备纳米球形炭(50~100 nm)的优化工艺为沉积温度1 150℃、沉积压力5 kPa和天然气/氢气(气体流量比)1∶4。本研究对球形炭的气相沉积机理进行了详细的研究。沉积温度对球形炭的尺寸和微结构影响较小,沉积压力对炭核的碰撞几率影响较大。另外,氢在炭形核过程中起来很重要的作用,氢的存在有效的较少了炭核的碰撞几率。
  • S H Chen, J F Wu, R H Zhou, et al. Porous carbon apheres doped with Fe3C as an anode for high-rate lithium-ion batteries[J]. Electrochimica Acta, 2015, 180: 78-85.
    W Kräschmer, L D Lamb, Fostriropoulos D R Huffman. Progress towards a quantitative understanding of antarctic ozone depletion[J]. Nature, 1990, 347: 347-354.
    E F Kukovitsky, S G L’vov, N A Sainov. Correlation between metal catalyst particle size and carbon nanotube growth[J]. Chem Phys Lett, 2000, 317: 97-102.
    A K Sinha, D W Hwang, L P Hwang. A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method[J]. Chem Phys Lett. 2000, 332: 455-460.
    W Benzinger, K J Huttinger. Chemistry and kinetics of chemical vapor infiltration of pyrocarbon-IV. Investigation of methane/hydrogen mixtures[J]. Carbon, 1999, 37: 931-940.
    M Sharon, K Mukhopadhyay, K Yase, S Ijima. Spongy carbon nanobeads-A new material[J]. Carbon, 1998, 36: 507-511.
    Z C Kang, Z L Wang. Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesized by a mixed-valent oxide-catalytic carbonization process[J]. J Phys Chem B, 1996, 100: 5163-5165.
    Z C Kang, Z L Wang. Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nano sized carbon spheres[J]. Philos Mag B, 1996, 73: 905-929.
    Y H Yi, G H Zhu, H Sun, et al. Nitrogen-doped hollow carbon spheres rapped with graphene nanostructure for highly sensitive electrochemical sensing of parachlorophenol[J]. Biosens Bioelectron, 2016, 86: 62-67.
    J Dou, S M Yin, J Chong, et al. Carbon spheres anchored Co3O4 nanoclusters as an efficient catalyst for dye degradation[J]. Appl Catal A, 2016, 513: 106-115.
    V Vignal, A W Morawski, H Konno, et al. Effects of carbonization atmosphere and subsequent oxidation on pore structure of carbon spheres observed by scanning tunneling microscopy[J]. J Mater Res, 1999, 14: 1102-1112.
    E Auer, A Freund, J Pietsch, T Tacke. Carbons as supports for industrial precious metal catalysts[J]. Appl Catal, 1998, 173: 259-271.
    M Sharon, K Mukhopadhyay, K Yase, et al.Spongy carbon nanobeads-A new material[J]. Carbon, 1998, 36: 507-511.
    S Flandrois, B Simon. Electrode characteristics of pitch-based carbon fiber as an anode in lithium rechargeable battery[J]. Carbon, 1992, 37: 165-180.
    G Hu, D Ma, M J Cheng, et al. Direct synthesis of uniform hollow carbon spheres by a self-asembly template approach[J]. Chem Commun, 2002, 17: 1948-1949.
    H Hou, A K Schaper, F Weller. Carbon nanotubes and spheres produced by modified ferrocene pyrolysis[J]. Cheminform, 2002, 14: 3990-3994.
    J W Liu, M W Shao, Q Tang, et al. A medial-reduction route to hollow carbon spheres[J]. Carbon, 2003, 41: 1682-1685.
    X Yang, C Li, W Wang, et al. Chemical route from PTFE to amorphous carbon nanospheres in supercritical water[J]. Chem Commun, 2004, 3: 342-343.
    J Y Miao, D W Hwang, K V Narasimhulu, et al. Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts[J]. Carbon, 2004, 42: 813-822.
    M Inagaki. Carbon materials structure, texture and intercalation[J]. Solid State Ionics, 1996, 86: 833-839.
    M Inagaki. Room temprature exfoliation of graphite microgravity[J]. Carbon, 1993, 8: 711-713.
    A Huang, X Zhu, S Wang, et al. Synthesis of bimodal mesoporous carbon spheres from biomass starch and CBZ release[J]. Mater Lett, 2016, 169: 54-57.
    X Guo, H Liu, Y Shen, et al. Theoretical and experimental studies on silica-coated carbon spheres composites[J]. Appl Surf Sci, 2013, 283: 215-221.
    X Zhao, W Li, S X Liu. Coupled soft-template/hydrothermal process synthesis of mesoporous carbon spheres from liquefied larch sawdust[J]. Mater Lett, 2013, 107: 5-8.
    A Govindaraj, R Sen, B V Nagaraju, et al. Carbon nanospheres and tubules obtained by the pyrolysis of hydrocarbons[J]. Philos Mag Lett, 1997, 76: 363-367.
    V G Pol, M Motiei, A Gedanken, et al. Carbon spherules: Synthesis, properties and mechanistic elucidation[J]. Carbon, 2004, 42: 111-116.
    H S Qian, F M Han, B Zhang, et al. Non-catalytic CVD preparation of carbon spheres with a specific size[J]. Carbon, 2004, 42: 761-766.
    V G Pol, V S Pol, J M-C Moreno, et al. High yield one-step synthesis of carbon spheres produced by dissociating individual hydrocarbons at their autogenic pressure at low temperatures[J]. Carbon, 2006, 44: 3285-3292.
  • 加载中
图(1)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  71
  • PDF下载量:  578
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-28
  • 录用日期:  2016-10-28
  • 修回日期:  2016-10-03
  • 刊出日期:  2016-10-28

目录

    /

    返回文章
    返回