留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

葱叶一步法裂解制备多孔炭及其电容性能研究

于晶 高利珍 李雪莲 吴超 高丽丽 李长明

于晶, 高利珍, 李雪莲, 吴超, 高丽丽, 李长明. 葱叶一步法裂解制备多孔炭及其电容性能研究. 新型炭材料, 2016, 31(5): 475-484. doi: 10.1016/S1872-5805(16)60026-4
引用本文: 于晶, 高利珍, 李雪莲, 吴超, 高丽丽, 李长明. 葱叶一步法裂解制备多孔炭及其电容性能研究. 新型炭材料, 2016, 31(5): 475-484. doi: 10.1016/S1872-5805(16)60026-4
YU Jing, GAO Li-zhen, LI Xue-lian, WU Chao, GAO Li-li, LI Chang-ming. Porous carbons produced by the pyrolysis of green onion leaves and their capacitive behavior. New Carbon Mater., 2016, 31(5): 475-484. doi: 10.1016/S1872-5805(16)60026-4
Citation: YU Jing, GAO Li-zhen, LI Xue-lian, WU Chao, GAO Li-li, LI Chang-ming. Porous carbons produced by the pyrolysis of green onion leaves and their capacitive behavior. New Carbon Mater., 2016, 31(5): 475-484. doi: 10.1016/S1872-5805(16)60026-4

葱叶一步法裂解制备多孔炭及其电容性能研究

doi: 10.1016/S1872-5805(16)60026-4
基金项目: 山西省青年科技研究基金资助项目(2013021011-3);山西省留学人员科研基金资助项目(2013-041);太原理工大学人才引进资助项目(tyut-rc201110a).
详细信息
    通讯作者:

    高丽丽,博士后,讲师.E-mail:gaolili@tyut.edu.cn

  • 中图分类号: X712

Porous carbons produced by the pyrolysis of green onion leaves and their capacitive behavior

Funds: Shanxi Province Science Foundation for Youths (2013021011-3); Shanxi Scholarship Council of China (2013-041); Project for Importing Talent of Taiyuan University of Technology(tyut-rc201110a).
  • 摘要: 以葱叶为炭前驱体,在不添加任何活化剂的条件下,炭化活化同时进行,制备了孔径分布主要集中于0.6~1.2 nm和3~5nm之间的葱基多孔炭材料,并对其电容性能进行研究。分别采用扫描电子显微镜(SEM)、场发射扫描电子显微镜(FE-SEM)、能量弥散X射线光谱(EDX)、火焰原子吸收光谱(FAAS)、X射线衍射(XRD)、热重分析(TGA)和氮气吸脱附曲线等方法表征了葱基炭的形貌、成分、比表面积及孔径分布等性能;通过循环伏安(CV)、交流阻抗(EIS)、恒流充放电(GCD)等电化学方法考察了材料的比电容和循环寿命等电化学性能。结果表明,葱叶中本身含有的微量矿物质如钙、钾等在其炭化的过程中同时起到了活化的作用。研究了不同温度下(600~800℃)制备的多孔炭的性能,发现800℃条件下制得的样品性能最佳,以微孔为主,介孔辅之,孔径为0.6~1.2 nm的微分孔隙体积达2.608 cm-3/g/nm,3~5 nm的微分孔隙体积有0.144 cm-3 g/nm,BET比表面积为551.7 m2/g,质量比电容为158.6 F/g,有效面积电容可高达28.8 μF/cm2。这表明孔径分布情况对多孔炭的电荷存储能力有很重要的影响,此法也为提高“有效面积电容”提供了思路。
  • Kandalkar S G, Dhawale D S, Kim C K, et al. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application[J]. Synthetic Metals, 2010, 160(11): 1299-1302.
    Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731.
    Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
    Li Y F, Liu Y Z, Zhang W K, et al. Green synthesis of reduced graphene oxide paper using Zn powder forsupercapacitors[J]. Materials Letters, 2015, 157: 273-276.
    Miller J R, Simon P. Electrochemical capacitors for energy management[J]. Science Magazine, 2008, 321(5889): 651-652.
    Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10): 4245-4270.
    Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27.
    Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.
    Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. The Journal of Physical Chemistry C, 2009, 113(30): 13103-13107.
    Kötz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15): 2483-2498.
    Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
    Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-377.
    Choi D, Kumta P N. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2006, 153(12): A2298-A2303.
    Lee H, Cho M S, Kim I H, et al. RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors[J]. Synthetic Metals, 2010, 160(9): 1055-1059.
    Shi H. Activated carbons and double layer capacitance[J]. Electrochimica Acta, 1996, 41(10): 1633-1639.
    Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, et al. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes[J]. Bioresource Technology, 2012, 111: 185-190.
    Li X, Xing W, Zhuo S, et al. Preparation of capacitor’s electrode from sunflower seed shell[J]. Bioresource Technology, 2011, 102(2): 1118-1123.
    Bao L, Li X. Towards textile energy storage from cotton T-shirts[J]. Advanced Materials, 2012, 24(24): 3246-3252.
    Balathanigaimani M S, Shim W G, Lee M J, et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J]. Electrochemistry Communications, 2008, 10(6): 868-871.
    Raymundo-Piñero E, Leroux F, Béguin F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer[J]. Advanced Materials, 2006, 18(14): 1877-1882.
    Rufford T E, Hulicova-Jurcakova D, Fiset E, et al. Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte[J]. Electrochemistry Communications, 2009, 11(5): 974-977.
    Rufford T E, Hulicova-Jurcakova D, Khosla K, et al. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse[J]. Journal of Power Sources, 2010, 195(3): 912-918.
    Rufford T E, Hulicova-Jurcakova D, Zhu Z, et al. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors[J]. Electrochemistry Comm-unications, 2008, 10(10): 1594-1597.
    Subramanian V, Luo C, Stephan A M, et al. Supercapacitors from activated carbon derived from banana fibers[J]. The Journal of Physical Chemistry C, 2007, 111(20): 7527-7531.
    Wu F C, Tseng R L, Hu C C, et al. Effects of pore structure and electrolyte on the capacitive characteristics of steam-and KOH-activated carbons for supercapacitors[J]. Journal of Power Sources, 2005, 144(1): 302-309.
    Wang Q, Yan J, Wang Y, et al. Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors[J]. Carbon, 2013, 52: 209-218.
    Raymundo-Piñero E, Cadek M, Beguin F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds[J]. Advanced Functional Materials, 2009, 19(7): 1032-1039.
    Biswal M, Banerjee A, Deo M, et al. From dead leaves to high energy density supercapacitors[J]. Energy & Environmental Science, 2013, 6(4): 1249-1259.
    Fan Z, Qi D, Xiao Y, et al. One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors[J]. Materials Letters, 2013, 101: 29-32.
    Thomberg T, Kurig H, Jänes A, et al. Mesoporous carbide-derived carbons prepared from different chromium carbides[J]. Microporous and Mesoporous Materials, 2011, 141(1): 88-93.
    Wang Y, Xia Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15[J]. Electrochimica Acta, 2006, 51(16): 3223-3227.
    Raymundo-Pinero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon, 2006, 44(12): 2498-2507.
    Ania C O, Khomenko V, Raymundo-Piñero E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Advanced Functional Materials, 2007, 17(11): 1828-1836.
    Qu T, Guo W, Shen L, et al. Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10424-10433.
    Nakagawa K, Mukai S R, Suzuki T, et al. Gas adsorption on activated carbons from PET mixtures with a metal salt[J]. Carbon, 2003, 41(4): 823-831.
    Kim C, Lee J W, Kim J H, et al. Feasibility of bamboo-based activated carbons for an electrochemical supercapacitor electrode[J]. Korean Journal of Chemical Engineering, 2006, 23(4): 592-594.
    Hao G P, Mi J, Li D, et al. A comparative study of nitrogen-doped hierarchical porous carbon monoliths as electrodes for supercapacitors[J]. New Carbon Materials, 2011, 26: 197-203.
    Chen M D, Kang X Y, Wumaier T, et al. Preparation of activated carbon from cotton stalk and its application in supercapacitor[J]. Solid State Electrochem, 2013, 17: 1005-1012.
    Jang Y, Jo J, Choi Y M, et al. Activated carbon nanocomposite electrodes for high performance supercapacitors[J]. Electrochimica Acta, 2013, 102: 240-245.
    Basri N H, Dolah B N M. Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon[J]. Int J Electrochem Sci, 2013, 8: 257-273.
    Guo Y, Qi J, Jiang Y, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Materials Chemistry and Physics, 2003, 80(3): 704-709.
    Kim Y J, Lee B J, Suezaki H, et al. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors[J]. Carbon, 2006, 44(8): 1592-1595.
    Ruan C, Ai K, Lu L. Biomass-derived carbon materials for high-performance supercapacitor electrodes[J]. RSC Advances, 2014, 4(58): 30887-30895.
    McDonough J R, Choi J W, Yang Y, et al. Carbon nanofiber supercapacitors with large areal capacitances[J]. Applied Physics Letters, 2009, 95(24): 243109.
    Zheng G, Hu L, Wu H, et al. Paper supercapacitors by a solvent-free drawing method[J]. Energy Environ Sci, 2011, 4(9): 3368-3373.
  • 加载中
图(1)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  50
  • PDF下载量:  492
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-10
  • 录用日期:  2016-10-28
  • 修回日期:  2016-07-28
  • 刊出日期:  2016-10-28

目录

    /

    返回文章
    返回