留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热解炭去除污水中Cr(VI)

Türkan Altun Yakup Kar

Türkan Altun, Yakup Kar. 热解炭去除污水中Cr(VI). 新型炭材料, 2016, 31(5): 501-509. doi: 10.1016/S1872-5805(16)60028-8
引用本文: Türkan Altun, Yakup Kar. 热解炭去除污水中Cr(VI). 新型炭材料, 2016, 31(5): 501-509. doi: 10.1016/S1872-5805(16)60028-8
Türkan Altun, Yakup Kar. Removal of Cr(VI) from aqueous solution by pyrolytic charcoals. New Carbon Mater., 2016, 31(5): 501-509. doi: 10.1016/S1872-5805(16)60028-8
Citation: Türkan Altun, Yakup Kar. Removal of Cr(VI) from aqueous solution by pyrolytic charcoals. New Carbon Mater., 2016, 31(5): 501-509. doi: 10.1016/S1872-5805(16)60028-8

热解炭去除污水中Cr(VI)

doi: 10.1016/S1872-5805(16)60028-8
详细信息
    通讯作者:

    Yakup Kar.E-mail:karyakup@gmail.com

  • 中图分类号: TQ127.1+1

Removal of Cr(VI) from aqueous solution by pyrolytic charcoals

  • 摘要: 以胡桃壳在450℃裂解得到生物质炭BC450,以胡桃壳与20%沥青砂在450℃裂解得到BCTS20,与商业活性炭(CAC)进行对比研究去除污水中Cr(VI)的能力。与BC450相比,BCTS20具有更丰富的表面官能团。在适当条件下,BC450、BCTS20、CAC对Cr(VI)的去除率分别为80.47%、90.01%、95.69%。采用Langmuir、Freundlich、D-R模型研究吸附等温线,其中Langmuir模型最佳。BC450、BCTS20、CAC的最大Langmuir吸附容量分别为36.55、49.76、51.94 mg/g。这些炭材料对Cr(VI)的吸附可能归因于由离子交换、静电作用与螯合作用引起的化学过程。
  • Liu W, Zhang J, Zhang, C, et al. Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from trapa natans husk[J]. Chemical Engineering Journal, 2010, 162: 677-684.
    Sikaily E A, Nemr A E, Khaled A, et al. Removal of toxic chromium from waste water using green alga ulva lactuca and its activated carbon[J]. Journal of Hazardous Materials, 2007, 148: 216-228.
    Li H, Li Z, Liu T, et al. A novel technology for biosorption and recovery of hexavalent chromium in wastewater by bio-functional magnetic beads[J]. Bioresource Technology, 2008, 99: 6271-6279.
    Arslan G, Edebali S, Pehlivan E. Physical and chemical factors affecting the adsorption of Cr(VI) via humic acids extracted from brown coals[J]. Desalination, 2010: 255, 117-123.
    Kim S D, Park K S, Gu M B. Toxicity of hexavalent chromium to daphnia magna: influence of reduction reaction by ferrous iron[J]. Journal of Hazardous Materials, 2002, A93: 155-164.
    Dönmez G, Aksu Z. Removal of chromium (VI) from salina wastewaters by dunaliella species[J]. Process Biochemistry, 2002, 38: 751-762.
    Gottipati R, Mishra S. Process optimization of adsorption of Cr (VI) on activated carbons prepared from plant precursors by a two-level full factorial design[J]. Chemical Engineering Journal, 2010, 160: 99-107.
    Baral A, Engelken R D. Chromium-based regulations and greening in metal finishing industries in the USA[J]. Environmental Science and Policy, 2002, 5: 121-133.
    Terry P A. Characterization of Cr ion exchange with hydrotalcite[J]. Chemosphere, 2004, 57: 541-546.
    Ölmez T. The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology[J]. Journal of Hazardous Materials, 2009, 162: 1371-1378.
    Alguacil F J, Caravaca C, Martin M I. Transport of chromium(VI) through a cyanex 921-supported liquid membrane from HCI solutions[J]. Journal of Chemical Technology and Biotechnology, 2003, 78: 1048-1053.
    Dan? V. Kinetic and thermodynamic studies of the biosorption of Cu (Ⅱ) by agaricus campestris[J]. Environmental Progress and Sustainable Energy, 2011, 30: 177-185.
    Moussavi G, Barikbin B. Biosorption of chromium (VI) from industrial wastewater onto pistachio hull waste biomass[J]. Chemical Engineering Journal, 2010, 162: 893-900.
    Liu Z, Zhang F S. Removal of copper (Ⅱ) and phenol from aqueous solution using porous carbons derived from hydrothermal chars[J]. Desalination, 2011, 267: 101-106.
    Liu W J, Zeng F X, Jiang H, et al. Preparation of high adsorption capacity bio-chars from waste biomass[J]. Bioresource Technology, 2011, 102: 8247-8252.
    Cheng H N, Wartelle L H, Klasson K T, et al. Solid-state NMR and ESR studies of activated carbons produced from pecan shells[J]. Carbon, 2010, 48: 2455-2469.
    Mohan D, Pittman J C U, Bricka M, et al. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. Journal of Colloid Interface Science, 2007, 310: 57-73.
    Cao N, Darmstadt H, Roy C. Activated carbon produced from charcoal obtained by vacuum pyrolysis of softwood bark residues[J]. Energy Fuels, 2001, 15: 1263-1269.
    Mohan D, Rajput S, Singh V K, et al. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent[J]. Journal of Hazardous Materials, 2011, 188: 319-333.
    Wang X J, Wang Y, Wang X, et al. Microwave-assisted preparation of bomboo charcoal-based iron-containing adsorbents for Cr(VI) removal[J]. Chemical Engineering Journal, 2011, 174: 326-332.
    Kiliç M, Kirbiyik C, Cepeliogullar Ö, et al. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis[J]. Applied Surface Science, 2013, 283: 856-862.
    Mohan D, Sarswat A, Ok Y S, et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review[J]. Bioresource Technology, 2014, 160: 191-202.
    Zhou Y, Gao B, Zimmerman A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152: 538-542.
    Deveci H, Kar Y. Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis[J]. Journal of Industrial and Engineering Chemistry, 2013, 19: 190-196.
    Kar Y. Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactor[J]. Bioresource Technology, 2011, 102: 9800-9805.
    Sürmen Y, Demirba? A. Cofiring of biomass and lignite blends: Resource facilities; technological and environmental issues[J]. Energy Sources, 2003, 25: 175-187.
    Nowicki P, Pietrzak R, Wachowska H. Sorption properties of activated carbons obtained from walnut shells by chemical and physical activation[J]. Catalysis Today, 2010, 150: 107-114.
    Pehlivan E, Altun T. Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell[J]. Journal of Hazardous Materials, 2008, 155: 378-384.
    APHA. Standard methods for the examination of water and wastewater[S]. 17th ed, APHA-WWA-WPCF, vol. 3, 1989.
    Raveendran K, Ganesh A. Adsorption characteristics and pore-development of biomass-pyrolysis char[J]. Fuel, 1998, 77: 769-781.
    Nameni M, Alavi Moghadam M R, Arami M. Adsorption of hexavalent chromium from aqueous solutions by wheat bran[J]. International Journal of Environmental Science and Technology, 2008, 5: 161-168.
    Mor S, Ravindra K, Bishnoi N R. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal[J]. Bioresource Technology, 2007, 98: 954-957.
    Karthikeyan T, Rajgopal S, Miranda L R. Chromium (VI) adsorption from aqueous solution by hevea brasilinesis sawdust activated carbon[J]. Journal of Hazardous Materials, 2005, B124: 192-199.
    Pehlivan E, Kahraman H, Pehlivan E. Sorption equilibrium of Cr(VI) ions on oak wood charcoal (Carbo Ligni) and charcoal ash as low-cost adsorbents[J]. Fuel Processing Technology, 2011, 92: 65-70.
    Baral S S, Dasa S N, Rath P. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust[J]. Biochemical Engineering Journal, 2006, 31: 216-222.
    Jain M, Garg V K, Kadirvelu K. Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass[J]. Journal of Environmental Management, 2010, 91: 949-957.
    Wang F Y, Wang H, Ma J W. Adsorption of cadmium (Ⅱ) ions from aqueous solution by a new low-cost adsorbent-bamboo charcoal[J]. Journal of Hazardous Materials, 2010, 177: 300-306.
    Bansal M, Singh D, Garg V K. A comparative study for the removal of hexavalent chromium from aqueous solution by agricultural wastes’carbons[J]. Journal of Hazardous Materials, 2009, 171: 83-92.
    Dakiky M, Khamis M, Manassra A, et al. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents[J]. Advances in Environmental Research, 2002, 6: 533-540.
    Karatas M. Removal of Pb(Ⅱ) from water by natural zeolitic tuff: kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2012, 199-200: 383-389.
    Altun T, Pehlivan E. Removal of Cr(VI) from aqueous solutions by modified walnut shells[J]. Food Chemistry, 2012, 132: 693-700.
    Kadirvelu K, Thamaraiselvi K, Namasivayam C. Adsorption of nickel (Ⅱ) from aqueous solution onto activated carbon prepared from coir pith[J]. Separation and Purification Technology, 2001, 24: 497-505.
    Babel S, Kurniawan T A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan[J]. Chemosphere, 2004, 54: 951-967.
    Demiral H, Demiral Í, Tümsek F, et al. Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models[J]. Chemical Engineering Journal, 2008, 144: 188-196.
    Aydin Y A, Aksoy N D. Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics[J]. Chemical Engineering Journal, 2009, 151: 188-194.
    Ho Y S, Mckay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34: 451-465.
    Wang X S, Chen L F, Li F Y, et al. Removal of Cr(VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance[J]. Journal of Hazardous Materials, 2010, 175: 816-822.
    Romero-Gonzalez J, Peralta-Videa J R, Rodriguez E. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass[J]. The Journal of Chemical Thermodynamics, 2005, 37: 343-347.
    Panda L, Das B, Rao D S, et al. Application of dolochar in the removal of cadmium and hexavalent chromium ions from aqueous solutions[J]. Journal of Hazardous Materials, 2011, 192: 822-831.
    Singh D B, Prasad G, Rupainwar D C. Adsorption technique for the treatment of As (V) rich effluents[J]. Colloids and Surfaces, 1996, A 111: 49-56.
    Seyf-laye Alfa-Sika M, Liu F, Chen H. Optimization of key parameters for chromium (VI) removal from aqueous solutions using activated charcoal[J]. Journal of Soil Science and Environmental Management, 2010, 1(3): 55-62.
    Anandkumar J, Mandal B. Removal of Cr(VI) from aqueous solution using bael fruit (Aegle marmelos correa) shell as an adsorbent[J]. Journal of Hazardous Materials, 2010, 168: 633-640.
    Dubey S P, Gopal K. Adsorption of chromium (VI) on low cost adsorbents derived from agricultural waste material: a comparative study[J]. Journal of Hazardous Materials, 2007, 145: 465-470.
    Hamadi N K, Chen X D, Farid M M, et al. Adsorption kinetics for the removal of chromium (VI) from aqueous solution by adsorbent derived from used tyres and sawdust[J]. Chemical Engineering Journal, 2001, 84: 95-105.
  • 加载中
图(1)
计量
  • 文章访问数:  541
  • HTML全文浏览量:  85
  • PDF下载量:  581
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-01
  • 录用日期:  2016-10-28
  • 修回日期:  2016-09-15
  • 刊出日期:  2016-10-28

目录

    /

    返回文章
    返回