留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硅过渡层纳米金刚石膜/GaN复合膜系的制备

刘金龙 田寒梅 陈良贤 魏俊俊 黑立富 李成明

刘金龙, 田寒梅, 陈良贤, 魏俊俊, 黑立富, 李成明. 基于硅过渡层纳米金刚石膜/GaN复合膜系的制备. 新型炭材料, 2016, 31(5): 518-524. doi: 10.1016/S1872-5805(16)60029-X
引用本文: 刘金龙, 田寒梅, 陈良贤, 魏俊俊, 黑立富, 李成明. 基于硅过渡层纳米金刚石膜/GaN复合膜系的制备. 新型炭材料, 2016, 31(5): 518-524. doi: 10.1016/S1872-5805(16)60029-X
LIU Jin-long, TIAN Han-mei, CHEN Liang-xian, WEI Jun-jun, HEI Li-fu, LI Cheng-ming. Preparation of nano-diamond films on GaN with a Si buffer layer. New Carbon Mater., 2016, 31(5): 518-524. doi: 10.1016/S1872-5805(16)60029-X
Citation: LIU Jin-long, TIAN Han-mei, CHEN Liang-xian, WEI Jun-jun, HEI Li-fu, LI Cheng-ming. Preparation of nano-diamond films on GaN with a Si buffer layer. New Carbon Mater., 2016, 31(5): 518-524. doi: 10.1016/S1872-5805(16)60029-X

基于硅过渡层纳米金刚石膜/GaN复合膜系的制备

doi: 10.1016/S1872-5805(16)60029-X
基金项目: 国家自然科学基金(51402013,51272024);中国博士后科学基金(2014M550022);中央高校基本科研业务经费(FRF-TP-15-052A2).
详细信息
    作者简介:

    刘金龙,博士,讲师.E-mail:liujinlong@ustb.edu.cn.

    通讯作者:

    李成明,博士,教授.E-mail:chengmli@mater.ustb.edu.cn

  • 中图分类号: TB333

Preparation of nano-diamond films on GaN with a Si buffer layer

Funds: National Natural Science Foundation of China (51402013, 51272024); China Postdoctoral Science Foundation (2014M550022);Fundamental Research Funds for the Central Universities (FRF-TP-15-052A2).
  • 摘要: 本文研发了一种简便有效的在GaN半导体衬底上直接生长纳米金刚石膜的方法。研究发现,直接将GaN衬底暴露于氢等离子体中5 min即发生分解,且随着温度从560℃升高至680℃,这种分解反应愈加剧烈,很难在GaN衬底上直接形成结合力良好的纳米金刚石膜。通过在GaN衬底上镀制几纳米厚的硅过渡层,在富氢金刚石生长环境下,抑制了GaN衬底的分解,同时在GaN衬底上沉积了约2 μm厚的纳米金刚石膜。硅过渡层厚度是决定纳米金刚石与GaN衬底结合力的主要因素。当硅过渡层厚度为10 nm时,纳米金刚石膜与GaN衬底呈现出大于10 N的结合力,可能与硅过渡层在金刚石生长过程中向SiC过渡层转变有关。
  • Gelmont B, Kim K, Shur M. Monte carlo simulation of electron transport in gallium nitride[J]. Journal of Applied Physics, 1993, 74(3): 1818-1821.
    Zhang D, Bian J M, Qin F W, et al. Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices[J]. Materials Research Bulletin, 2011, 46(10): 1582-1585.
    Gaska R, Yang J W, Osinsky A, et al. Electron transport in AlGaN heterostructures grown on 6H-SiC substrates[J]. Applied Physics Letters, 1998, 72(6): 707-709.
    Sadi T, Kelsal R W, Pilgrim N J. Investigation of self-heating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method[J]. IEEE Transactions on Electron Devices, 2006, 53(12): 2892-2900.
    Trew R J, Green D S, Shealy J B. AlGaN/GaN HFET reliability[J]. IEEE Microwave Magazine, 2009, 10(4): 116-127.
    Kuball M, Hayes J M, Uren M J, et al. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy[J]. IEEE Eletron Device Letters, 2002, 23(1): 7-9.
    Felbinger J G, Chandra M V S, Sun Y J, et al. Comparison of GaN HEMTs on diamond and SiC substrates[J]. IEEE Eletron Device Letters, 2007, 28(11): 948-950.
    Wu Y F, Saxler A, Moore M, et al. 30W/mm GaN HEMTs by field plate optimization[J]. IEEE Electron Device Letters, 2004, 25(3): 117-119.
    Govindaraju N, Singh R N. Processing of nanocrystalline diamond thin films for thermal manage-ment of wide-bandgap semiconductor power electronics[J]. Materials Science and Engineering: B, 2011, 176(14): 1058-1072.
    Diduck Q, Felbinger J, Eastman L F, et al. Frequency performance enhancement of AlGaN/GaN HEMTs on diamond[J]. Electron Letters, 2009, 45(14): 758-759.
    Goyal V, Sumant A V, Teweldebrhan D, et al. Direct low-temperature integration of nano-crystalline diamond with GaN substrates for improved thermal management of high-power electronics[J]. Advanced Functional Materials, 2012, 22(7): 1525-1530.
    Joshi B C, Dhanavantri C, Kumar D. Sapphire, SiC, AlN, Si and diamond-substrate material for GaN HEMT and LED[J]. Journal of Optoelectronics and Advanced Materials, 2009, 11(8): 1111-1116.
    Zhang D, Bai Y Z, Qin F W, et al. Preparation and characteristics of GaN films on freestanding CVD thick diamond films[J]. Chinese Physics Letters, 2010, 27(1): 018102-018102-4.
    Zimmer J W, Chandler G. Advances in large diameter GaN on diamond substrates [C]. CS Mantech Conference, Chicago, USA, April 14-17, 2008.
    Zou Y S, Yang Y, Chong Y M, et al. Chemical vapor deposition of diamond films on patterned GaN substrates via a thin silicon nitride protective layer[J]. Crystal Growth and Design, 2008, 8(5): 1770-1773.
    May P W, Tsai H Y, Wang W N, et al. Deposition of CVD diamond onto GaN[J]. Diamond and Related Materials, 2006, 15(4-8): 526-530.
    Francis D, Faili F, Babi D, et al. Formation and characterization of 4-inch GaN-on-diamond substrates[J]. Diamond and Related Materials, 2010, 19(2-3): 229-233.
    Hageman P R, Schermer J J, Larsen P K. GaN growth on single-crystal diamond substrate by metalorganic chemical vapour deposition and hydride vapour deposition[J]. Thin Solid Film, 2003, 443(1-2): 9-13.
    Yeh Y H, Chen K M, Wu Y H, et al. Hydrogen etching of GaN and its application to produce free-standing GaN thick films[J]. Journal of Crystal Growth, 2011, 333(1): 16-19.
    Alomari M, Dipalo M, Rossi S, et al. Diamond overgrown InAlN/GaN HEMT [J]. Diamond and Related Materials, 2011, 20(4): 604-608.
  • 加载中
图(1)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  110
  • PDF下载量:  539
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 录用日期:  2016-10-28
  • 修回日期:  2016-10-12
  • 刊出日期:  2016-10-28

目录

    /

    返回文章
    返回