留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单壁碳纳米管改变手性外延生长的密度泛函理论研究

谌为 李峰 刘畅 尹利长

谌为, 李峰, 刘畅, 尹利长. 单壁碳纳米管改变手性外延生长的密度泛函理论研究. 新型炭材料, 2016, 31(5): 525-531. doi: 10.1016/S1872-5805(16)60030-6
引用本文: 谌为, 李峰, 刘畅, 尹利长. 单壁碳纳米管改变手性外延生长的密度泛函理论研究. 新型炭材料, 2016, 31(5): 525-531. doi: 10.1016/S1872-5805(16)60030-6
SHEN Wei, LI Feng, LIU Chang, YIN Li-chang. Changing the chirality of single-wall carbon nanotubes during epitaxial growth: A density functional theory study. New Carbon Mater., 2016, 31(5): 525-531. doi: 10.1016/S1872-5805(16)60030-6
Citation: SHEN Wei, LI Feng, LIU Chang, YIN Li-chang. Changing the chirality of single-wall carbon nanotubes during epitaxial growth: A density functional theory study. New Carbon Mater., 2016, 31(5): 525-531. doi: 10.1016/S1872-5805(16)60030-6

单壁碳纳米管改变手性外延生长的密度泛函理论研究

doi: 10.1016/S1872-5805(16)60030-6
基金项目: 国家自然科学基金项目(51272257,51202255,51472249).
详细信息
    作者简介:

    谌为,博士研究生.E-mail:weichen@imr.ac.cn

    通讯作者:

    尹利长,副研究员.E-mail:lcyin@imr.ac.cn

  • 中图分类号: TQ127.1+1

Changing the chirality of single-wall carbon nanotubes during epitaxial growth: A density functional theory study

Funds: National Natural Science Foundation of China (51272257, 51202255, 51472249).
  • 摘要: 采用密度泛函理论计算系统研究了单壁碳纳米管(Single-walled carbon nanotube,SWCNT)改变手性外延生长(手性指数从(n,m)变化到(n±Δ,m?Δ),其中Δ=1和2)的热力学过程。结果表明,碳管手性变化后外延生长在热力学上都需要吸收能量,其所需吸收的能量随着管径的减小线性减小。在Δ=1的情况下,由于近扶手椅型碳管改变手性时,所引入的5~7元环对与管轴的夹角比近锯齿型碳管更大,导致5~7元环对的形成能增加,使得管径相同的近扶手椅型碳管比近锯齿型碳管在改变手性生长时需要吸收更多的能量。在Δ=2的情况下,发现只有当两个必须引入的5~7元环对相互毗邻,手性改变的外延生长所需能量最小,预测其为实验上最易于实现的碳管手性指数由(n,m)变化到(n±Δ,m?Δ)的外延生长模式。这些理论研究结果有助于深入理解SWCNTs手性变化后外延生长的热力学行为,可为基于外延生长可控制备单一手性SWCNTs提供理论依据。
  • Jorio A, Dresselhaus G, Dresselhaus M S. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications[M]. Springer, Berlin, New York, 2001.
    Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules[J]. Appl Phys Lett, 1992, 60(18): 2204-2206.
    Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393(6680): 49-52.
    Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer[J]. Nature, 2013, 501(7468): 526-530.
    Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films[J]. Science, 2004, 305(5688): 1273-1276.
    Deheer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source[J]. Science, 1995, 270(5239): 1179-1180.
    Kreupl F, Graham A P, Duesberg G S, et al. Carbon nanotubes in interconnect applications[J]. Microelectron Eng, 2002, 64(1-4): 399-408.
    Cambre S, Wenseleers W, Goovaerts E, et al. Determination of the metallic/semiconducting ratio in bulk single-wall carbon nanotube samples by cobalt porphyrin probe electron paramagnetic resonance spectroscopy[J]. ACS Nano, 2010, 4(11): 6717-6724.
    Kato K, SaitoS, Geometries. electronic structures and energetics of small-diameter single-walled carbon nanotubes[J]. Physica E, 2011, 43(3): 669-672.
    Wang H, Yuan Y, Wei L, et al. Catalysts for chirality selective synthesis of single-walled carbon nanotubes[J]. Carbon, 2015, 81: 1-19.
    Loebick C Z, Podila R, Reppert J, et al. Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes[J]. J Am Chem Soc, 2010, 132(32): 11125-11131.
    Li X L, Tu X M, Zaric S, et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection[J]. J Am Chem Soc, 2007, 129(51): 15770-15771.
    He M S, Jiang H, Liu B L, et al. Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles[J]. Sci Rep, 2013, 3: 1460(1)-1460(7).
    Wang H, Wei L, Ren F, et al. Chiral-selective CoSO4/SiO2 Catalyst for (9,8) single-walled carbon nanotube growth[J]. Acs Nano, 2013, 7(1): 614-626.
    Dutta D, Chiang W H, Sankaran R M, et al. Epitaxial nucleation model for chiral-selective growth of single-walled carbon nanotubes on bimetallic catalyst surfaces[J]. Carbon, 2012, 50(10): 3766-3773.
    Fouquet M, Bayer B C, Esconjauregui S, et al. Highly chiral-selective growth of single-walled carbon nanotubes with a simple monometallic Co catalyst[J]. Phys Rev B, 2012, 85: 235411(1)-235411(7).
    Liu B L, Ren W C, Li S S, et al. High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst[J]. Chem Commu, 2012, 48(18): 2409-2411.
    He M, Chernov A I, Fedotov P V, et al. Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst[J]. J Am Chem Soc, 2010, 132(40): 13994-13996.
    Wei L, Wang B, Goh T H, et al. Selective enrichment of (6,5) and (8,3) single-walled carbon nanotubes via cosurfactant extraction from narrow (n,m) distribution samples[J]. J Phys Chem B, 2008, 112(10): 2771-2774.
    Wang H, Wang B, Quek X Y, et al. Selective synthesis of (9, 8) single-walled carbon nanotubes on cobalt incorporated TUD-1 catalysts[J]. J Am Chem Soc, 2010, 132(47): 16747-16749.
    Chiang W H, SankaranR M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles[J]. Nat Mater, 2009, 8(11): 882-886.
    Yang F, Wang X, Zhang D Q, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510(7506): 522-524.
    Sanchez-Valencia J R, Dienel T, Groning O, et al. Controlled synthesis of single-chirality carbon nanotubes[J]. Nature, 2014, 512(7512): 61-64.
    Lei Z X, Liu J, Wang J B, et al. The effects of catalyst structure and morphology on the growth of carbon nanotubes[J]. New Carbon Materials, 2003, 18(4): 271-276.
    Song J L, Wang L, Feng S A, et al. Growth of carbon nanotubes by the catalytic decomposition of methane over Fe-Mo/Al2O3 catalyst: Effect of temperature on tube structure[J]. New Carbon Materials, 2009, 24(4): 307-313.
    Yao Y G, Feng C Q, Zhang J, et al. "Cloning" of single-walled carbon nanotubes via open-end growth mechanism[J]. Nano Lett, 2009, 9(4): 1673-1677.
    Liu J, Wang C, Tu X M, et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy[J]. Nat Commun, 2012, 3: 1199(1)-1199(7).
    Yao Y G, Li Q W, Zhang J, et al. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions[J]. Nat Mater, 2007, 6(4): 283-286.
    Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186.
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
    Blochl P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953-17979.
    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758-1775.
    Saito R, Dresselhaus G, Dresselhaus M S. Physical Properties of Carbon Nanotubes [M]. Imperial College Press, London, 1996.
    Chico L, Crespi V H, Benedict L X, et al. Pure carbon nanoscale devices: Nanotube heterojunctions[J]. Phys Rev Lett, 1996, 76(6): 971-974.
    Ouyang M, Huang J L, Cheung C L, et al. Atomically resolved single-walled carbon nanotube intramolecular junctions[J]. Science, 2001, 291(5501): 97-100.
    Wei D C, LiuY Q. The intramolecular junctions of carbon nanotubes[J]. Adv Mater, 2008, 20(15): 2815-2841.
    Yazyev O V, LouieS G. Topological defects in graphene: Dislocations and grain boundaries[J]. Phys Rev B, 2010, 81: 195420(1)-195420(7).
    Grantab R, Shenoy V B, Ruoff R S. Anomalous strength characteristics of tilt grain boundaries in graphene[J]. Science, 2010, 330(6006): 946-948.
    Huang P Y, Ruiz-Vargas C S, van der Zande A M, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts[J]. Nature, 2011, 469(7330): 389-392.
    Zhou L G, Shi S Q. Formation energy of stone-wales defects in carbon nanotubes[J]. Appl Phys Lett, 2003, 83(6): 1222-1224.
    Yuan Q H, Xu Z P, Yakobson B I, et al. Efficient defect healing in catalytic carbon nanotube growth[J]. Phys Rev Lett, 2012, 108: 245505(1)-245505(5).
  • 加载中
图(1)
计量
  • 文章访问数:  472
  • HTML全文浏览量:  75
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-29
  • 录用日期:  2016-10-28
  • 修回日期:  2016-10-03
  • 刊出日期:  2016-10-28

目录

    /

    返回文章
    返回