留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PAN纤维炭化过程致密化机理研究

马全胜 高爱君 童元建 张佐光

马全胜, 高爱君, 童元建, 张佐光. PAN纤维炭化过程致密化机理研究. 新型炭材料, 2016, 31(5): 550-554. doi: 10.1016/S1872-5805(16)60031-8
引用本文: 马全胜, 高爱君, 童元建, 张佐光. PAN纤维炭化过程致密化机理研究. 新型炭材料, 2016, 31(5): 550-554. doi: 10.1016/S1872-5805(16)60031-8
MA Quan-sheng, GAO Ai-jun, TONG Yuan-jian, ZHANG Zuo-guang. The densification mechanism of polyacrylonitrile carbon fibers during carbonization. New Carbon Mater., 2016, 31(5): 550-554. doi: 10.1016/S1872-5805(16)60031-8
Citation: MA Quan-sheng, GAO Ai-jun, TONG Yuan-jian, ZHANG Zuo-guang. The densification mechanism of polyacrylonitrile carbon fibers during carbonization. New Carbon Mater., 2016, 31(5): 550-554. doi: 10.1016/S1872-5805(16)60031-8

PAN纤维炭化过程致密化机理研究

doi: 10.1016/S1872-5805(16)60031-8
基金项目: 国家863计划(2015AA03A202).
详细信息
    作者简介:

    马全胜,博士研究生.E-mail:terrymark@163.com

    通讯作者:

    高爱君,讲师.E-mail:bhgaoaijun@163.com

  • 中图分类号: TQ342+.74

The densification mechanism of polyacrylonitrile carbon fibers during carbonization

Funds: National High Technology Research and Development Program of China(2015AA03A202).
  • 摘要: 研究了PAN纤维在不同炭化温度下(900~1 400℃)的致密性变化规律及机理。研究表明,随炭化温度升高,纤维密度出现增大-减小-增大-减小的变化规律,在炭化温谱[900,T]与[T,0]下密度具有相同的变化规律,但出现极值的温度不同,而两种温谱下密度随元素含量的变化则完全一致。在炭化温谱[900,T]下,1 050℃之前以缩聚反应为主,小分子气体快速逸出,密度快速增大;纤维在1 050℃左右出现最大失重速率,石墨微晶片层增长速度变缓,氮气释放量最大;1 050℃之后以裂解反应为主,元素大量裂解逸出使纤维密度迅速下降;1 250℃之后纤维中只有氮气逸出,石墨化转变与氮元素快速逸出的竞争反应使得密度先增后降,在1 350℃出现极大值。
  • REN Gui-zhi, CHEN Cong-jie, DENG Li-hui, et al. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy[J]. New Carbon Materials, 2015, 30(5): 476-480.
    Li M, Gu Y Z, Liu Y N, et al. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotuves on the fibers[J]. Carbon, 2013, 52: 109-121.
    Li W, Long D H, Miyawaki J, et al. Structural feature of polyacrylonitrile-based carbon fibers[J]. Journal of Materials and Science, 2012, 47(2): 919-928.
    ZHAO Yu-hua, LI Qi-feng, WANG Jun-wei, et al. Preparation and properties of carbon fiber/polyether polyurethane composites[J]. New Carbon Materials, 2014, 29(6): 454-453.
    Tong Y J, Wang X Q, Su H, et al. Oxidation kinetics of polyacrylonitrile-based carbon fibers in air and the effect on their tensile properties[J]. Corrosion Science, 2011, 50(8): 2484-2488.
    Wu G P, Li D H, Yang Y, et al. Microvoid evolution in carbon fibers during graphitization for the preparation of carbon/carbon composites[J]. New Carbon Materials, 2014, 29(1): 41-46.
    Gao A J, Gu Y Z, Wu Q, et al. Influence of processing temperature on interfacial behavior of HKT800 carbon fiber with BMI and epoxy matrices[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1255-1262.
    Mittal J, Konno H, Inagaki M, et al. Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers[J]. Carbon, 1998, 36: 1327-1330.
    Ko T H, Li C H. The influence of pre-carbonization on the properties of pan-based carbon fibers developed by two-stage continuous carbonization and air oxidation[J]. Polymer Composites, 1995, 16: 224-232.
    Kalashinik A T. The role of different factors in creation of the structure of stalilized acrylic fibers[J]. Fibre Chemistry, 2002, 34: 11-17.
    Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-base carbon fibers[J]. Carbon, 1996, 34: 1427-1445.
    Liu J, Wang P H, Li R Y. Continuous carbonization of polyacrylonitrile based oxidized fibers: aspects on mechanical properties and morphological structure[J]. Journal of Applied Polymer Science, 1994, 52(7): 945-950.
    Li L Y, Huang Q Z, Zhang H B. Study on the carbonization of polyacrylonitrile-based preoxidized fibres[J]. Materials Science and Engineering or Powder Metallargy, 2000, 5(1): 69-74.
    Watt W. Nitrogen evolution during the pyrolysis of polyacrylonitrile[J]. Nature: Physical Science, 1972, 235: 10-11.
    Ko T, Day T, Perng J. The characterization of PAN-based carbon fibers developed by two stage continuous carbonization[J]. Carbon, 1993, 31(5): 765-771.
    Ko T. The influence of pyrolysison physical properties and microstructure of modified PAN fiber during carbonization[J]. Journal of Applied Polymer Science, 1991, 43(3): 589-600.
    Gao A J, Su C J, Luo S, et al. Densification mechanism of polyacrylonitrile-based carbon fiber during heat treatment[J]. Journal of Physics and Chemistry of Solids, 2011, 72: 1159-1164.
  • 加载中
图(1)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  135
  • PDF下载量:  578
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-15
  • 录用日期:  2016-10-28
  • 修回日期:  2016-10-12
  • 刊出日期:  2016-10-28

目录

    /

    返回文章
    返回